Mark schemes

(a) (i) Deoxyribose;

1 pentose / 5C sugar = neutral
(ii) Phosphate / Phosphoric acid;
phosphorus / P = neutral
(b) Hydrogen (bonds);
(c) $381 / 384 / 387$;
(d) (Gln) Met Met Arg Arg Arg Asn;
(e) Change in (sequence of) amino acids / primary structure;

Change in hydrogen / ionic / disulfide bonds leads to change in tertiary structure / active site (of enzyme);

Substrate cannot bind / no enzyme-substrate complexes form;
\boldsymbol{Q} Reject $=$ different amino acids are formed
[8] (a) Phosphate;

Deoxyribose;
Q Candidates must specify deoxyribose. This term is a specification requirement. Ignore anything that is not incorrect.
(b) 4;
(c) (i) 14 ;
(ii) 36 ;
If (c)(i) incorrect accept [50 - (c)(i)]
(d) Different genes;

Different (DNA) base sequences;
(a) GCAAUG; ;
(b) (i) DNA is edited / introns present in DNA;

Allow reference to 'junk' or non-coding DNA
(ii) 220; allow 218 or 219-allow 2

Three bases / nucleotides code for one amino acid;
Correct explanation for 218 or 219;
(c) mRNA has no base-pairing, tRNA has base-pairing / mRNA linear, tRNA cloverleaf shape; mRNA has no binding site for amino acids, tRNA has; mRNA different for each gene / many kinds, only few / 20 / 64 kinds of tRNA; accept mRNA longer / larger / more nucleotides than tRNA
$\max 2$
[7] (a) (i) ACG;

4
(ii) serine;
(b) idea that DNA contains introns / mRNA is only exons / mRNA is "edited';(allow junk / non-sense DNA)
(c) binds to / blocks codon / triplet on mRNA so anticodon / tRNA will not fit in /base-pair; amino acids not delivered / joined;

Accept translation will not occur for 1 mark
[5] (a) antibiotic has diffused / spread / moved into agar;
5
(b) largest clear area / inhibition zone / killed the most bacteria;
(c) disrupts cell wall / prevents cell wall synthesis;stops DNA replication;
[5] (a) Protein made of (chain of) amino acids;

Each amino acid has its own base / triplet code;

2
(b) UCA = 2 marks

TCA - 1 mark;
(c) CCG;

GGG GGG;
(d) (i) Changes base sequence; Of later triplets / amino acid codes;
(ii) S-phase / interphase;
(e) 1. mRNA leaves (nucleus) through nuclear pore;
2. To ribosome;
3. tRNA molecules bring amino acids (to ribosome);
4. Specific tRNA molecule for specific amino acid;
5. Anticodon of tRNA corresponds / complementary to codon on mRNA;
6. Peptide bonds form between amino acids;
7. tRNA detaches and collects another amino acid;8. Ribosome moves along mRNA; $\max 6$
(iii) nucleus;
(iii) A, D, F; (ignore E if evident)

1
(b) (i) Isoleucine;
(ii) TGG;

1

[6

] (a) (i) join / attach nucleotides, to form a strand / along backbone / phosphodiester bonds;

> (reject reference to H bonds, complementary base pairing)
(ii) ribosome / RER;
(b) (i) CGTTACCAA;
(ii) CGU UAC CAA;
(c) substitution;
(d) (i) alanine;
(ii) (mutation 1) no change(to sequence of amino acids);
codon for alanine / degenerate codon / same amino acid coded for;
(mutation 2)
(change in sequence) valine replaced by alanine / codon for alanine; folding / shape / tertiary structure / position of bonds may change; (reject peptide bonds)
[10] (a) side effects / allergic reactions / low toxicity to cells;
interaction with other drugs / effective in conditions of use / reasonably stable; should only act on the problem bacteria / narrow spectrum; how much resistance the bacteria have built up;
(b) (i) tetracycline
prevents tRNA binding to ribosomes / amino acid / mRNA;
amino acids not available / brought / picked up;
chloramphenicol prevents amino acids being joined / prevents primary structure forming;
no enzymes / no structural proteins formed;
(accept cell wall formation if qualified) (prevents protein synthesis gains one mark in either section, once only)
(ii) only prevents tRNA binding to 70S / prokaryotic / bacterial ribosomes / human ribosomes are different sizes / shapes / structure;

10

(b) anticodon complementary to codon / reads message on mRNA; specific amino acid; carried / transferred (to ribosome); correct sequence of amino acids along polypeptide;
(c)

(three / four / five correct 1 mark; six correct 2 marks)
[7] (a) high energy radiation / ionising particles;
named particles / $\alpha, \beta, \gamma ;$ colchicine; x rays / cosmic rays; uv (light); carcinogen / named carcinogen; mustard gas / phenols / tar (qualified);
(b) (i) removal of one or more bases / nucleotide; frameshift / (from point of mutation) base sequence change;
(ii) sequence of bases in mRNA would change;
(sequence of) amino acids different / different primary structure; (active site / enzyme 1) changed tertiary shape / changed active sites; white pigment does not bind; lilac pigment not produced / white pigment remains unchanged / enzyme 1 does not function;
(iii) blue and lilac; white;

colour of petal
(white)
blue
lilac;
white;

[9] (a) chloroplast, so cell photosynthesises and moves to optimum / best light intensity for
photosynthesis;
avoids damage due to bright light;
(b) (i) 2700
$\frac{242 \times 7500 \times 900}{60}$

$$
\begin{aligned}
& \text { (ii) } \quad{ }^{6}=2 \text { marks } \\
& =27225000 / 27 \times 10
\end{aligned}
$$

(allow 1 mark for principle:

2
(c) (i) rate slightly slower / not affected in first 20 / 30 minutes / lowerpeak than control; then decreases / much lower (than control);
(allow 1 mark for increase in first 20 / 30 minutes, then decreased, if not compared with control / normal)
(disqualify flagellum grows longer)

1. actinomycin has no effect (on growth of flagella); even though mRNA production / transcription prevented;
(accept references to 'expt 1')
2. (re)growth little affected by puromycin at first; protein synthesis inhibited, so likely to be using proteins present;
(b) (i) CCAG;
(ii) 5;
(c) high energy radiation / X rays / ultraviolet light / gamma rays;high energy particles / alpha particles / beta particles; named chemical mutagens e.g. benzene / caffeine / pesticide / mustard gas / tobacco tar / free radicals;
(two named examples of any of the above = 2 marks) length of time of exposure (to a mutagen); dosage (of mutagen);
(d) (i) UAC UUA UGG;
(ii) addition and deletion (of bases / nucleotides);thymine added;
adenine deleted;
(addition of thymine and deletion of adenine $=3$ marks)
(allow addition of adenine (RNA) and deletion of uracil (RNA)
= 2 marks)
each amino acid coded for by triplet / three bases (so three times more bases than amino acids);
(ii) deletion;
(deletion) of three bases;
because substitution / addition would change amino acid(s);
(b) codon on mRNA; specific / complementary base pairing with; anti-codon on tRNA; specific tRNA for each amino acid; protein formed by condensation reactions /
peptide bonds formed;
4 max
[8] (a) memory B / I cells do not recognise (new antigens);
antibodies previously produced are not effective as shape not complementary to new antigen;
(b) (i) antigen in membrane presented to lymphocytes /
produce cytokinins;
(ii) mitochondria provide (more) ATP / energy;
(more) RER / ribosomes synthesise proteins;
(more) Golgi body secretes / modifies or packages proteins / produces glycoproteins;
(B lymphocytes) produces antibodies;
change in base / nucleotide (in DNA);
16
change in base sequence of mRNA / change in codons / idea of frameshift following deletion or addition / incorrect tRNA / anticodon; incorrect amino acids / different primary structure / fomation of new stop codon; different tertiary structure / different 3D structure / different polypeptide / shortened polypeptide;
different shape of active site / no active site present;
[5] (a) mutation changes the amino acid sequence / primary structure of Factor VIII protein;
17 changes the tertiary structure / 3D shape;
(b) (mutant) Factor VIII protein is non-functional / does not work with Factor IX;so no conversion of Factor X to active form and pathway blocked;
(c) boy's blood contains (active) Factor VIII;

Factor VIII haemophiliac's blood contains (active) Factor IX;
the mixture has both Factors and so the pathway can complete / blood clots;

2 max
[6] (i) mRNA attaches to ribosome;

18

codon on mRNA; binds to an anti-codon on tRNA; each tRNA brings a specific amino acid; sequence of codons / bases on mRNA determines order of amino acids; formation of peptide bonds / amino acids joined by condensation reactions;

4 max
(iii) inserted gene / mRNA complementary to normal gene / mRNA; binds to it to prevent protein synthesis / form double strand / prevents mRNA binding to ribosomes; will not stop all translation, some mRNA reaches ribosomes / because not all mRNA is bound by inserted gene mRNA;
(a) (Gene 1) allele A makes enzyme converting J to $\mathrm{K} /$ colourless to red;

Allele a produces no / non-functional enzyme;
(Gene 2) allele B makes enzyme converting K to $\mathrm{L} /$ red to purple;
Allele b produces no / non-functional enzyme;
("Recessive alleles produce no / non-functional enzyme" = 2)
White flowers result from genotype aa;
... regardless if B or $b /$ even if $a a B _$;
Colourless (substance) / J produces white;
Red flowers when A_bb / enzyme 1 only;
Purple flowers when $A _B$ _/ enzymes 1 and 2 ;
(b) (i) (1) (red parent) AAbb;
(2) (white parent) aaBB;
(ii) F_{1} are AaBb ;
F_{2} ratio of $9: 3: 4$;
Purple : red : white;
Suitable working shown;
(c) (i) aabb, aaBb, and aaBB; (allow aabb \& aaB_)
(ii) (Crush each type of white petal to make an extract, and) add some of the (red) pigment / K, to petal OR incubate with K;
(extract becoming) purple is identified as aaBB OR that staying red, after K is added, is aabb;
[15] (a) Two suitable differences between DNA and RNA;

1 mark per correct row to 2 max
e.g.

DNA is double stranded, RNA is single stranded;
DNA has thymine present, RNA has Uracil present;

Accept T and U

DNA is larger/heavier/longer, RNA is smaller/lighter/shorter;
DNA has a deoxyribose sugar, RNA has a ribose sugar;
DNA stays in the nucleus, RNA leaves the nucleus;
2 max
(b) Three suitable examples;
e.g.

Carries coded information about the sequence of amino acids;
Copied from DNA/gene;
Code is in sequence of bases / triplet / three bases / a codon codes
for one amino acid;
Moves out of nucleus/goes into cytoplasm;
To ribosomes;
Accept codons allow anticodons / tRNA to bind
Accept carries 'start' and 'stop' codes
Accept moves through ribosomes
3 max
(a) Any two of:

DNA	RNA
Large molecule	Smaller
Double stranded	Single stranded
Contains Thymine (T)	Contains Uracil (U)
Contains deoxyribose	Contains ribose

2 max
(b) Base sequence (on DNA/in gene);

Determines sequence of amino acids;
By determining base sequence on (messenger) RNA;
Code is a triplet code/three base code for an amino acid;

2 max

(c) Pairs of chromosomes/two chromosomes;

With genes for same features / with same genes;
At same loci / in same sequence;
Accept same alleles
2 max
[6]

