Mark schemes

1

- (a) 1. Degenerate: more than one (base) triplet for each amino acid;
 - 2. Non-overlapping: each base is part of only one triplet. Accept codon (as would be applicable to mRNA code)
- (b) A = adenine
 - C = cytosine
 - G = guanine
 - U = uracil

All four correct = 2 One error = 1 Two or more errors = 0

2 max

- (c) <u>AGT;</u>
- [5] (a) 1. DNA of eukaryotic cell has non-coding regions / introns within gene

2

Allow converse: (But) a prokaryotic cell does not have non-coding regions / introns in DNA;

OR

pre-mRNA contains non-coding regions / introns;

 (After transcription / during modification) these regions are removed from (pre-)mRNA;

Ignore references to 'cells need / bacteria do not need'

2 (b) 1. mRNA longer

2

1

OR

Has more nucleotides than tRNA;

- 2. mRNA is a straight molecule but tRNA is a folded molecule / clover-leaf shapedmolecule;
- 3. mRNA contains no paired bases / hydrogen bonds but tRNA has some paired bases /hydrogen bonds.

2 max[4]

(a) Translation.

- (b) Transfer RNA / tRNA.
- (c) TAC;

UAC.

(d) Have different R group.

Accept in diagram

- (e) 1. Substitution would result in CCA / CCC / CCU;
 - 2. (All) code for same amino acid / proline;
 - 3. Deletion would cause frame shift / change in all following codons / change nextcodon from UAC to ACC.

[8] (a) 1. Reduction in ATP production by aerobic respiration;

4

- 2. Less force generated because fewer actin and myosin interactions in muscle;
- 3. Fatigue caused by lactate from anaerobic respiration.
- (b) Couple A,
 - 1. Mutation in mitochondrial DNA / DNA of mitochondrion affected;
 - 2. All children got affected mitochondria from mother;
 - 3. (Probably mutation) during formation of mother's ovary / eggs;

Couple B,

- 4. Mutation in nuclear gene / DNA in nucleus affected;
- 5. Parents heterozygous;
- 6. Expect 1 in 4 homozygous affected.

4

- (c) 1. Change to tRNA leads to wrong amino acid being incorporated into protein;
 - 2. Tertiary structure (of protein) changed;
 - 3. Protein required for oxidative phosphorylation / the Krebs cycle, so less / noATP made.
- (d) 1. Mitochondria / aerobic respiration not producing much / any ATP;
 - 2. (With MD) increased use of ATP supplied by increase in anaerobic respiration;3. More lactate produced and leaves muscle by (facilitated) diffusion.

3

2

3

max

1

2

1

3

3

- (e) 1. Enough DNA using PCR;
 - 2. Compare DNA sequence with 'normal' DNA.

(a) 1. Helicase;

[15]

- 2. Breaks hydrogen bonds;
- 3. Only one DNA strand acts as template;
- 4. RNA nucleotides attracted to exposed bases;
- 5. (Attraction) according to base pairing rule;
- 6. RNA polymerase joins (RNA) nucleotides together;7. Pre-mRNA spliced to remove introns.

6 max

- (b) 1. Polymer of amino acids;
 - 2. Joined by peptide bonds;
 - 3. Formed by condensation;
 - 4. Primary structure is order of amino acids;
 - 5. Secondary structure is folding of polypeptide chain due to hydrogen bonding; *Accept* alpha helix / pleated sheet
 - 6. Tertiary structure is 3-D folding due to hydrogen bonding and ionic / disulfide bonds;
 - 7. Quaternary structure is two or more polypeptide chains.

5 max

- (c) 1. Hydrolysis of peptide bonds;
 - 2. Endopeptidases break polypeptides into smaller peptide chains;
 - 3. Exopeptidases remove terminal amino acids;
 - 4. Dipeptidases hydrolyse / break down dipeptides into amino acids.

4 [15] (a)

Feature	Bacterium	Human immunodeficiency virus (HIV) particle	
RNA	\checkmark	√	
Cell wall	\checkmark		
Enzyme molecules	\checkmark	√	
Capsid		√	1 mar
		•	for ea

correct vertical column

2

(b) 1. (Complementary) nucleotides/bases pair

OR

A to T and C to G;

Ignore '(DNA polymerase) forms base pairs/nucleotide pairs'

- 2. DNA polymerase;
- 3. Nucleotides join together (to form new strand)/phosphodiester bonds form; Ignore '(DNA polymerase) forms base pairs/nucleotide pairs'

If clearly writing rote answer about DNA replication <u>**2 max**</u> e.g. helicase or separating strands

(C) 1. DNA double stranded/double helix and mRNA single-stranded; Contrast requires both parts of the statement 2. DNA (very) long and RNA short; Accept 'RNA shorter' or 'DNA bigger/longer' Thymine/T in DNA and uracil/U in RNA; 3. 4. Deoxyribose in DNA and ribose in RNA; R Deoxyribonucleic/ribonucleic acid **Ignore** ref. to histones Ignore ref. to helix and straight chain alone 5. DNA has base pairing and mRNA doesn't/ DNA has hydrogen bonding and mRNA doesn't; 6. DNA has introns/non-coding sequences and mRNA doesn't; Ignore ref to splicing 3 max [8] (a) Quaternary (structure); Accept phonetic spelling eg quarternary/quarternery /4° Award no mark for quaternary as part of a list 1 423: (b) 1 (c) 1. Oxyhaemoglobin formed/ haemoglobin is loaded/uptakes/associates/binds with oxygen in area of higher ppO_2 / in gas exchange surface/lungs/gills; Reference to "react with" = max 1 Accept: reversible interaction with oxygen Ignore: haemoglobin is carried / contained in red blood cells 2. (oxygen) unloaded/dissociates from/released (in area of lower ppO_2 / in capillaries/to cells/tissues); 2 (d) 56(%); (i) Accept responses in the range 54-58(%) 1 (ii) 1. (Anaemia curve shifted to right) haemoglobin has lower affinity for oxygen / binds less tightly; Assume reference is to haemoglobin of anaemia unless stated 2. releases more oxygen / oxygen is released quicker / oxygen dissociates/ unloads more readily to muscles/tissues/cells; 3. (For) respiration; Accept: even with a lower haemoglobin concentration / meet demand for ATP/energy; 3 [8]

7

(a)

1.

3

(Reaction with ATP) breaks/allows binding of myosin to actin/ actinomyosin bridge;

- 2. Provides energy to move myosin head;
 - 1. Credit 'breaks' or 'allows' binding to actin (because cyclical)
 - 2. Allow in context of 'power stroke' or 're-cocking' (becausecyclical)
 - 2. Ignore contraction on its own
- (b) (i) Any value between 68.5 and 69.49 (%);;

If get difference of 0.9 but calculation of percentage incorrect, then award 1 mark;

- (ii) (Mutant mice)
 - Unable to make phosphocreatine/ less phosphateavailable to make/recycle ATP;
 - 2. So less energy/so less ATP available for contraction/fastmuscle fibres;
 - 1 and 2. Reject production/creation of energy once
 - 2 Accept less energy for grip
 - 2. Accept no energy/no ATP for contraction/fast muscle fibres
- (c) 1. (Heterozygous) have one dominant/normal allele (for creatineproduction);
 - (This) leads to production of enough/normal amount ofcreatine;
 1. Accept has one allele/one copy of the gene for/that is making creatine

2

2

2

2

[8]

2

(a) 9 2.

(i) 1. (Tumour suppressor) gene inactivated / not able to control / slow down cell

division;

Ignore: references to growth

- Rate of cell division too fast / out of control.
 1 and 2 Accept: mitosis
 1 and 2 Reject: meiosis
- (ii) 1. (Genetic) code degenerate; Accept: codon for triplet
 Accept description of degenerate code, e.g. another triplet codes for the same amino acid
 - 2. Mutation in intron. Accept: mutation in non-coding DNA

1. Antibody has specific tertiary structure / binding site / variable region; Do not accept explanations involving undefined antigen 2. Complementary (shape / fit) to receptor protein / GF / binds to receptor protein /to GF; Ignore: same shape as receptor protein / GF 3. Prevents GF binding (to receptor). 3 (In all organisms / DNA,) the same triplet codes for the same amino acid; [6] (a) (i) Accept codon / same three bases / nucleotides Accept plurals if both triplets and amino acids Reject triplets code for an amino acid Reject reference to producing amino acid 1 (ii) 64; 1 (b) Splicing; Ignore deletion references Accept RNA splicing 1 (c) (i) 1. (Mutation) changes triplets / codons after that point / causes frame shift; Accept changes splicing site Ignore changes in sequence of nucleotides / bases 2. Changes amino acid sequence (after this) / codes for different aminoacids (after this); Accept changes primary structure Reject changes amino acid formed / one amino acid changed 3. Affects hydrogen / ionic / sulfur bond (not peptide bond); 4. Changes tertiary structure of protein (so non-functional); Neutral 3-D structure 3 max (ii) 1. Intron non-coding (DNA) / only exons coding; Context is the intron Do not mix and match from alternatives Neutral references to introns removed during splicing 1.and 2. Ignore ref. to code degenerate and get same / different

amino acid in sequence

(b)

10

1 max

(So) not translated / no change in mRNA produced / no effect (on protein)
 / no effect on amino acid sequence;
 Accept does not code for amino acids

OR

- 3. Prevents / changes splicing;
- 4. (So) faulty mRNA formed; Accept exons not joined together / introns not removed
- 5. Get different amino acid sequence;

2 max

[8]

(a) 1. Sugar-phosphate (backbone) / double stranded / helix **so** provides strength / stability

/ protects bases / protects hydrogen bonds; Must be a direct link / obvious to get the mark Neutral: reference to histones

- 2. Long / large molecule **so** can store lots of information;
- Helix / coiled so compact;
 Accept: can store in a small amount of space for 'compact'
- 4. Base sequence allows information to be stored / base sequence codes foramino acids / protein;

Accept: base sequence allows transcription

- Double stranded so replication can occur semi-conservatively / strands can act as templates / complementary base pairing / A-T and G-C so accurate replication / identical copies can be made;
- (Weak) hydrogen bonds for replication / unzipping / strand separation / many hydrogen bonds so stable / strong;
 Accept: 'H-bonds' for 'hydrogen bonds'

6

- (b) 1. (Mutation) in **E** produces highest risk / 1.78;
 - 2. (Mutation) in **D** produces next highest risk / 1.45;
 - (Mutation) in C produces least risk / 1.30; Must be stated directly and not implied

E > *D* > *C* = 3 marks Accept: values of 0.78, 0.45 and 0.30 for MP1, MP2 and MP3 respectively If no mark is awarded, a principle mark can be given for the idea

that all mutant alleles increase the risk

(

(c) **180**;

(d) (Similarities):

- 1. Same / similar pattern / both decrease, stay the same then increase;
- 2. Number of cells stays the same for same length of time; *Ignore: wrong days stated*

(Differences):

(Per unit volume of blood)

3. Greater / faster decrease in number of healthy cells / more healthy cells killed /healthy cells killed faster;

Accept: converse for cancer cells Accept: greater <u>percentage</u> decrease in number of cancer cells / greater <u>proportion</u> of cancer cells killed

4. Greater / faster increase in number of healthy cells / more healthy cellsreplaced / divide / healthy cells replaced / divide faster;

Accept: converse for cancer cells For **differences**, statements made must be comparative

- (e) 1. More / too many healthy cells killed;
 - 2. (So) will take time to replace / increase in number; *Neutral: will take time to 'repair'*
 - 3. Person may die / have side effects;

(b)	(i)	Loss of 3 bases / triplet = 2 marks;;	
		'Stop codon / code formed' = 1 mark max unless related to the last amino acid	
		Loss of base(s) = 1 mark; eg triplet for last amino acid is changed to a stop codon / code = 2 marks	
		3 bases / triplet forms an intron = 2 marks	
		Accept: descriptions for 'intron' eg non-coding DNA	
		'Loss of codon' = 2 marks	
	(ii)	1. Change in tertiary structure / active site;	
		Neutral: change in 3D shape / structure	

1

3 max

2 max

[15] (a)

250 000;

(So) faulty / non-functional protein / enzyme;
 Accept: reference to examples of loss of function eg fewer E-S complexes formed

[5] (a) 1. (Protein / molecule) that moves from cytoplasm to DNA;

Accept 'it' as TF. Accept moves into nucleus

13

- (TF) binds to specific gene / genes / to specific part of / site on DNA / binds topromoter / RNA polymerase;
 Accept regulator / enhancer region
- Leads to / blocks (pre)mRNA production / allows / blocks binding of RNApolymerase (to DNA) / allows RNA polymerase to work;

Ignore translation unless context wrong Max 1 if refer to oestrogen as a transcription factor

2 max

2

- (b) 1. (Binding to CREB) prevents transcription / mRNA formation; *Accept* that lack of protein leaves NAD reduced
 - 2. (Binding of huntingtin) prevents production / translation of protein (that removeselectrons / protons from NAD);
 - Fewer electrons to electron transport chain / electron transport chain slows /stops / stops / slower oxidative phosphorylation;
 - 4. Fewer protons for proton gradient;
 - 5. Not enough ATP produced / energy supplied to keep cells alive / anaerobicrespiration not enough to keep cell alive;

Accept neurones require ATP for active transport of ions Ignore references to resting potential

3 max

- (c) 1. Mitochondrion has two membranes / inner and outer membranes; *Accept cristae for inner membrane*
 - 2. For each (different) membrane a (different) carrier required; Ignore reference to channel proteins
 - [7] (a) One / an amino acid (can be) coded for by more than one triplet;

Ac

14

Accept codon for triplet Accept description of triplet – <u>three</u> bases / nucleotides

(b)	1.	Tripl 1.	et / three bases on mRNA; 1. Accept nucleotide for base 1. Accept DNA for mRNA Ignore references to RNA unqualified			
		2.	That code for an amino acid;			
			2. Accept code for stop / start			2
(c)	(i)	Тој	ioin <u>nucleotides</u> together to form mRNA / premRNA / RNA; <i>Reject forming base pairs</i>			
			Accept checking and correcting mismatched base pairs			
			Accept checking and confecting mismatched base pairs			1
	(ii)	Reve	erse transcriptase;			
			If they give two enzymes, no mark			
						1
(d)	GGA	ATCC	same as CCTAGG in opposite direction;			
			Accept reads same both ways / same forward and back			
			Neutral bases are the opposite of each other / reference to base			
			pairs			1
				[6] (a)	(i)	UGC;
						1
	(ii)	TGC	TAC;			1
(b)	(DN	A) cor	ntains introns / non-coding bases / mRNA only contains exons / co	dingbase	es;	

Assume that 'it' refers to DNA

Neutral: DNA contains introns and exons Neutral: 'splicing'

Neutral: pre-mRNA contains introns

15

Ignore refs. to start and stop codons

- (c) Different primary structure / amino acid sequence / amino acid coded for; *Reject: different amino acids produced / formed Neutral: refs. to bonds*
- (d) 1. Acetylcholine not broken down / stays bound to receptor;
 - Na⁺ ions (continue to) enter / (continued) depolarisation / Na⁺ channels (kept) open / action potentials / impulses fired (continuously);

1

1

3. (Intercostal) muscles stay contracted / cannot relax;

'Muscles contract' is not enough Accept: diaphragm stays contracted / cannot relax

[7] (a) (i) Repeating units / nucleotides / monomer / molecules;

Allow more than one, but reject two

- (ii) 1. C = hydrogen bonds;
 - 2. D = <u>deoxy</u>ribose; *Ignore sugar*
 - 3. E = phosphate; Ignore phosphorus, Ignore molecule

(iii)	
-------	--

Name of base	Percentage
Thymine	34
Cytosine / Guanine	16
Adenine	34
Cytosine / Guanine	16

Spelling must be correct to gain MP1 First mark = names correct Second mark = % correct, with <u>adenine as 34%</u>

(b) (i) 153;

17

 Some regions of the gene are non-coding / <u>introns</u> / start / stop code / triplet / there are two DNA strands;

> Allow <u>addition</u> mutation Ignore unqualified reference to mutation Accept reference to introns and exons if given together Ignore 'junk' DNA / multiple repeats

> > [8] (a) (i) Phosphate and ribose;

Accept in either order. Both correct for one mark.

For phosphate accept PO₄/ Pi / P but not P.

3

2

1

1

3

			Do not accept phosphor Ignore references to per		r.	1
	(ii)	ТА	GGCA;			1
(b)		conta	es not contain hydrogen bo ain anticodon / straight / not Assume that "it" refers to mF Do not accept double sti	folded / no RNA.	pairs / containscodons / does amino acid binding site /	1
	(ii)		e-mRNA) contains introns / ers to pre-mRNA. Accept non-coding as ed		ains only exons; <i>Assume that "it"</i> intron.	1
(c)	(i)	F		1		
			Part of chromosome	U		
			Middle	18		
			End	21		
			One mark for both figure	es correct		1
	(ii)	1.	Have different (base) see	quences / co	ombinations of (bases);	
		2.	(Pre-mRNA) transcribed	from differe	ent DNA / codes for different proteins;	2
					[7] (a)	2 (i)
			Accept: nine			1
	(ii)	Intr	ons / non-coding DNA / jun	k DNA;		
		Sta	art / stop code / triplet; <i>Neutral: Repeats.</i> Accept: 'Introns and exo Reject: 'Due to exons'.	ns present'.		1 max
(b)	Cha	inge	in amino acid / s / primary s	structure;		
	Cha	nge	in hydrogen / ionic / disulfid	e bonds;		
	Alte	rs tei	rtiary structure;			

18

9;

(c) Number of bases

		Number	of bases	
	С	G	А	т
Strand A	26	19	20	9
Strand B	19	26	9	20

Second column correct;

Columns three and four correct;

	0010		2
(a)	1.	Hydrolysis breaks proteins / hydrolyses proteins / produces amino acids (from	
		proteins);	
	2.	Protein synthesis involves condensation;	2
(b)	Ami	no acids (from calliphorin) can be joined in different sequences /rearranged;	1
(c)	1.	Fall, rise and fall;	
	2.	Rise after 40 and fall after 80; Ignore concentration values.	2
(d)	(i)	Fall / increase then fall;	
		Lysosomes associated with tissue breakdown;	2
	(ii)	1. Tissues / cells are being broken down;	
		2. RNA is digested / hydrolysed / broken down;	
		3. By enzymes from lysosomes;	
		4. New proteins not made / no new RNA made;	2 max

(e) 1. (RNA) associated with making protein;

19

3

[7]

- 2. New / adult tissues are forming;
- (f) 1. In the first 6 days no / little oxygen supplied / with breakdown of tracheae, no /little oxygen supplied;
 - 2. (Without tracheae) respire anaerobically;
 - Anaerobic respiration involves reactions catalysed by enzyme B / conversion of pyruvate to lactate / involves lactate production;
 - 4. Enzyme **A** / Krebs cycle is part of aerobic respiration; *Or, with emphasis on aerobic respiration:*
 - 1. Tracheae supply oxygen / after 6 days oxygen supplied;
 - 2. (With tracheae) tissues can respire aerobically.

[15]

4

(a) Banding pattern changes as cheetah gets older / difficult to judge as tail is short / fluffy;

20			1
	(b)	(i) Mean not (always) a whole number;	
		Standard deviation not (always) zero;	2
			2
		 Movement of tail / angle of sight / confused it with another band / subjective estimation; 	
		Accept reference to Figure 1	
		E.g. Bands 2 and 3 have same thickness but look different	
			1
	(c)	Band width not the same on both sides of tail;	
			1
	(d)	Offspring of the same family will be more similar genetically;	
		As have same mother (and father) / parent;	
		Expect to see more differences in randomly chosen cheetahs;	
			3
		[8] (a)	Introns;
21			1
	(1)		
	(b)	lle Gly Val Ser;	1
			-
	(c)	(i) Has no effect / same amino acid (sequence) / sameprimary structure;	
		Q Reject same amino acid formed or produced.	1
			1

Glycine named as same amino acid;

1 It still codes for glycine = two marks.

(ii) Leu replaces Val / change in amino acid (sequence) / primary structure;

Change in hydrogen / ionic bonds which alters tertiary structure / active site; **Q** Different amino acid formed or produced negates first marking point.

Substrate cannot bind / no longer complementary / no enzyme-substrate complexes form;

Active site changed must be clear for third marking point but does not need reference to shape.

- (d) (i) Interphase / S / synthesis (phase);
 - (ii) DNA / gene replication / synthesis occurs / longest stage; Allow 'genetic information' = DNA.

Allow 'copied' or 'formed' = replication / synthesis

[9]

1

3

1

(a)

DNA	×	2	
mRNA	×	1	
tRNA	*	1	

One mark for each correct column Regard blank as incorrect in the context of this question Accept numbers written out: two, one, one

(b) (i) Marking principles

1 mark for complete piece transcribed;

Correct answer UGU CAU GAA UGC UAG

1 mark for complementary bases from sequence transcribed; *but allow 1 mark for complementary bases from section transcribed, providing all four bases are involved*

(ii) Marking principle

1 mark for bases corresponding to exons taken from (b)(i)

Correct answer UGU UGC UAG If sequence is incorrect in (b)(i), award mark if section is from exons. Ignore gaps.

2

1

2

1

<u>D</u>NA polymerase is incorrect Ignore references to RNA dependent or DNA dependent Allow phonetic spelling

(b) (i) (Receptor / transcription factor) binds to promoter which stimulates RNApolymerase / enzyme X;

Transcribes gene / increase transcription;

- (ii) Other cells do not have the / oestrogen / ERα receptors;
 But do not accept receptors in general.
- (c) Similar shape to oestrogen;

Binds receptor / prevents oestrogen binding;

Receptor not activated / will not attach to promoter / no transcription;

Accept alternative Complementary to oestrogen; Binds to oestrogen; Will not fit receptor;

2 max

2

1

[6] (a) Will replace themselves / keep dividing / replicate;

24

Undifferentiated / can differentiate / develop into other cells / totipotent / multipotent / pluripotent;

Accept tissues

(b) Reverse transcriptase;

Allow phonetic spelling

(c) (i) Alters base / nucleotide sequence / causes frame shift;

Different sequence of amino acids in polypeptide / protein / primary structure alters the tertiary structure;

Accept any reference, such as adding bases, to changing the base sequence of the gene. Reject deletion / substitution. Idea of sequence essential so not makes different amino acids. Accept answers involving stop / start codons and effect on protein.

(ii) Affects tumour suppressor gene;

Inactivates (tumour suppressor) gene;

Rate of cell division increased / tumour cells continue to divide;

Ignore answers relating to oncogenes. May gain third point.

(d) Yes

SCID patients unlikely to survive / quality of life poor unless treated; Cancer that develops is treatable / only affects 25% / five children;

No

Risk of developing cancer is high / 25%;

Cancer may recur / may not be treated successfully in future / only short time scale so more may develop cancer;

No mark for yes or no. Marks are for supporting argument based on biological reasoning. Accept any points

2 max

2 max