Mark schemes

(a)

1

1. DNA of eukaryotic cell has non-coding regions / introns within gene

> Allow converse: (But) a prokaryotic cell does not have non-coding regions / introns in DNA;

OR

pre-mRNA contains non-coding regions / introns;

2. (After transcription / during modification) these regions are removed from (pre-)mRNA;

Ignore references to 'cells need / bacteria do not need'

2 (b) 1. mRNA longer

OR

Has more nucleotides than tRNA;

- 2. mRNA is a straight molecule but tRNA is a folded molecule / clover-leaf shapedmolecule;
- 3. mRNA contains no paired bases / hydrogen bonds but tRNA has some paired bases /hydrogen bonds.

	(a)	Translation.	
2			1
	(b)	Transfer RNA / tRNA.	1
	(c)	TAC;	I
		UAC.	2
	(d)	Have different R group. Accept in diagram	1
	(e)	 Substitution would result in CCA / CCC / CCU; (All) code for same amino acid / proline; Deletion would cause frame shift / change in all following codons / change nextcodor from UAC to ACC. 	า 3

- (b) 1. Helicase;
- 3
- 2. Breaks hydrogen bonds;

2 max [4]

	6 max
Polymer of amino acids; Joined by peptide bonds; Formed by condensation; Primary structure is order of amino acids; Secondary structure is folding of polypeptide chain due to hydrogen bonding; <i>Acc</i> <i>alpha helix / pleated sheet</i>	cept
Tertiary structure is 3-D folding due to hydrogen bonding <u>and</u> ionic / disulfide bor Quaternary structure is two or more polypeptide chains.	nds;
	5 max
Hydrolysis of peptide bonds; Endopeptidases break polypeptides into smaller peptide chains; Exopeptidases remove terminal amino acids; Dipeptidases hydrolyse / break down dipeptides into amino acids.	4
[15] (a) 1. Reduction in ATP production by aerobic	respiration;
Less force generated because fewer actin and myosin interactions in muscle; Fatigue caused by lactate from anaerobic respiration.	3
le B , Mutation in nuclear gene / DNA in nucleus affected; Parents heterozygous; Expect 1 in 4 homozygous affected.	4 max
Change to tRNA leads to wrong amino acid being incorporated into protein; Tertiary structure (of protein) changed; Protein required for oxidative phosphorylation / the Krebs cycle, so less / noATP made.	3
Mitochondria / aerobic respiration not producing much / any ATP;	

1. 2. (With MD) increased use of ATP supplied by increase in anaerobic respiration;3. More lactate produced and leaves muscle by (facilitated) diffusion.

3

4

(c)

(d)

1. 2.

3. 4.

5.

6.

7.

1. 2.

3.

4.

2. Les

- 3. Fat
- Couple A (b)
 - Mut 1.
 - 2. All
 - 3. (Pro

Couple B

1.

2.

3.

(c)

(e)

- 4. Mut
- 5. Par
- 6. Exp

- 3. Only one DNA strand acts as template;
- 4. RNA nucleotides attracted to exposed bases;
- (Attraction) according to base pairing rule; 5. 6.
 - RNA polymerase joins (RNA) nucleotides together;7. Pre-mRNA spliced to remove introns.

(f) 1. Enough DNA using PCR;

5

3

2. Compare DNA sequence with 'normal' DNA.

2

		[1	1 5] (a) (i)) (In all organisms / DNA,) the same triplet codes for the same	amino acid;
			Accept p Reject tri	codon / same three bases / nucleotides plurals if both triplets and amino acids riplet <u>s</u> code for an amino acid eference to producing amino acid	1
	(ii)	64;			1
	(11)	04,			1
(b)	Spli	cing;			
			•	eletion references	
			Accept F	RNA splicing	1
(c)	(i)	1.	Accept c	n) changes triplets / codons after that point / causes frame shift; changes splicing site hanges in sequence of nucleotides / bases	
		2.	aminoaci Accept c	s amino acid sequence (after this) / codes for different ids (after this); changes primary structure hanges amino acid formed / one amino acid changed	
		3.	Affects h	ydrogen / ionic / sulfur bond (not peptide bond);	
		4.	Changes structure	s tertiary structure of protein (so non-functional); <i>Neutral 3-D</i>	
					max
	(ii)	1.	Context I Do not m Neutral r 1.and 2.	n-coding (DNA) / only exons coding; is the <u>intron</u> nix and match from alternatives references to introns removed during splicing Ignore ref. to code degenerate and get same / different cid in sequence	

(So) not translated / no change in mRNA produced / no effect (on protein) / no effect on amino acid sequence;
 Accept does not code for amino acids

OR

- 3. Prevents / changes splicing;
- 4. (So) faulty mRNA formed; Accept exons not joined together / introns not removed
- 5. Get different amino acid sequence;

2 max

(a) Locus;

Accept: loci

- (b) Differences in DNA / differences in base sequence of DNA; Accept: number of different alleles / size/variation in gene pool Reject: genes
- 1

1

- (c) 1. Jack Russell (genetic) diversity is (significantly) greatest;
 - 2. Bull terrier (genetic) diversity is (significantly) smallest / is mostinbred;
 - 3. Miniature terrier and Airedale terriers are similar;

1-3: do not credit just a list of values

4. Standard deviations do not overlap / do overlap with correct ref tosignificance;

Reference to significance must be relevant to examples given

Max 3

(d) 1. (Bull terrier) breeding has included a genetic bottleneck/ smallpopulation/more inbreeding/ greater selection (pressure);

Accept: founder effect

2. Reduced number of different alleles/size of gene pool; Reject: decrease in number of genes Ignore ref to mutations

OR

- Miniature (terrier) breeding has included more outbreeding/lessselection (pressure);
- 4. Increased number of different alleles/larger gene pool/more varietyof alleles;

Reject if genes used instead of alleles Reject: lower frequency of alleles Ignore ref to mutations

[7]

2

	(a)	250	250 000;			
7				1		
	(b)	(i)	Loss of 3 bases / triplet = 2 marks;; 'Stop codon / code formed' = 1 mark max unless related to the last amino acid			
			Loss of base(s) = 1 mark; eg triplet for last amino acid is changed to a stop codon / code = 2 marks 3 bases / triplet forms an intron = 2 marks			

6

-		(ii)	1. Change in amino acid / (sequence of) amino acids / primary structure;	 *
9	(a)	(i)	4;	
				1 [6]
			Accept reads same both ways / same forward and back Neutral bases are the opposite of each other / reference to base pairs	
	(d)	GG	GATCC same as CCTAGG in opposite direction;	1
		(ii)	Reverse transcriptase; If they give two enzymes, no mark	1
		()	Accept checking and correcting mismatched base pairs	1
	(c)	(i)	To join <u>nucleotides</u> together to form mRNA / premRNA / RNA; Reject forming base pairs	
			 2. That code for an amino acid; 2. Accept code for stop / start 	2
			 Ignore references to RNA unqualified That code for an amino acid; 	
			1. Accept DNA for mRNA	
	(b)	1.	Triplet / three bases on mRNA; 1. Accept nucleotide for base	
	(h)	1	Triplet (three beece on mDNA)	1
			Accept codon for triplet Accept description of triplet – <u>three</u> bases / nucleotides	
8				
			[5] (a) One / an amino acid (can be) coded for by more than o	2 ne triplet;
			Accept: reference to examples of loss of function eg fewer E-S complexes formed	•
			 Neutral: change in 3D shape / structure (So) faulty / non-functional protein / enzyme; 	
		(ii)	1. Change in tertiary structure / active site;	
			'Loss of codon' = 2 marks	2
			Accept: descriptions for 'intron' eg non-coding DNA	

1. Reject = different amino acids are 'formed'

		2.	Change in hydrogen / ionic / disulphide bonds alters tertiary str /active site (of enzyme);	ucture		
		2.	Alters 3D structure on its own is not enough for this markingpo	int.		
		З.	Substrate not complementary / cannot bind (to enzyme / active noenzyme- substrate complexes form;	e site) /	3	
(b)	1.	Lack o	f skin pigment / pale / light skin / albino;			
	2.	Lack o	f coordination / muscles action affected;	2	max	
(c)	Fou	A	ect / colonies split off / migration / interbreeding; Allow description of interbreeding e.g. reproduction between Individuals from different populations			
				[7] (a)	1 (i)	9;
		ŀ	Accept: nine		1	
	(ii)	Introns	/ non-coding DNA / junk DNA;			
		I A	stop code / triplet; <i>Neutral: Repeats.</i> Accept: 'Introns and exons present'. Reject: 'Due to exons'.	1	max	
(b)	Cha	nge in a	mino acid / s / primary structure;			
	Cha	nge in h	ydrogen / ionic / disulfide bonds;			
	Alte	F F	y structure; Reject: 'Different amino acid is formed' – negates first marking point. Neutral: Reference to active site.			
					3	

(c) Number of bases

10

		Number	of bases	
	С	G	А	Т
Strand A	26	19	20	9
Strand B	19	26	9	20

Second column correct;

Columns three and four correct;

[7] (a) (i) Phosphate and ribose;

2

11 Accept in either order. Both correct for one mark. For phosphate accept PO₄/ Pi / \mathbb{P} but not P. Do not accept phosphorus. Ignore references to pentose / sugar. 1 (ii) TAGGCA; 1 (b) Does not contain hydrogen bonds / base pairs / containscodons / does (i) not contain anticodon / straight / not folded / no amino acid binding site / longer; Assume that "it" refers to mRNA. Do not accept double stranded. 1 (ii) (pre-mRNA) contains introns / mRNA contains only exons; Assume that "it" refers to pre-mRNA. Accept non-coding as equivalent to intron. 1

(c) (i)

Part of chromosome	U
Middle	18
End	21

One mark for both figures correct

(ii) 1. Have different (base) sequences / combinations of (bases);

2. (Pre-mRNA) transcribed from different DNA / codes for different proteins;

[7] (a) More that one polypeptide / chain;

12

Ignore references to haem / other groups

(b) (i) 141;

1

1

1

2

- (ii) 1. Stop / start sequences;
 - 2. Non coding DNA (in the gene) / introns / multiple repeats / junk DNA; *Do not credit "some bases repeated"*

2 max

1

3

[8]

- 3. Two chains / a non-coding strand / complementary base pairs;
- 4. <u>Addition</u> of base by mutation;
- (c) Different primary structure / amino acids / different number of polypeptide chains; Question is about haemoglobin so do not credit differences in DNA
- (d) 1. Low partial pressure of oxygen in lungs;
 - (Llama) haemoglobin able to load more oxygen / (llama) haemoglobin saturated (at low / particular partial pressure of oxygen);
 - Higher affinity for oxygen;
 The terms used in the graph (or near approximations) should be used in this answer.
 Ignore references to unloading
 The answer must relate to llamas
-] (a) Banding pattern changes as cheetah gets older / difficult to judge as tail is short / fluffy;

13					1
	(b)	(i)	Mean not (always) a whole number; Standard deviation not (always) zero;		2
		(ii)	Movement of tail / angle of sight / confused it with another band / subjective estimation; Accept reference to Figure 1)	
			E.g. Bands 2 and 3 have same thickness but look different		1
	(c)	Bar	nd width not the same on both sides of tail;		1
	(d)	As ł	spring of the same family will be more similar genetically; have same mother (and father) / parent;		
		Ехр	pect to see more differences in randomly chosen cheetahs;		3
				[8] (a)	Introns

1	4

(b)	lle Gly Val Ser;				
(c)	(i)	Has no effect / same amino acid (sequence) / sameprimary structure; Q Reject same amino acid formed or produced.	1		
		Glycine named as same amino acid; 1 It still codes for glycine = two mar	ks.		
	(ii)	Leu replaces Val / change in amino acid (sequence) / primary structure;			
		Change in hydrogen / ionic bonds which alters tertiary structure / active site; Q Different amino acid formed or produced negates first marking point.			
		Substrate cannot bind / no longer complementary / no enzyme-substrate complexes form;			
		Active site changed must be clear for third marking point but does not need reference to shape.			
			3		
(d)	(i)	Interphase / S / synthesis (phase);	1		
	(ii)	DNA / gene replication / synthesis occurs / longest stage; <i>Allow 'genetic</i> information' = DNA.			
		Allow 'copied' or 'formed' = replication / synthesis	1		

(a) 15

DNA	*	2
mRNA	×	1
tRNA	*	1

One mark for each correct column Regard blank as incorrect in the context of this question Accept numbers written out: two, one, one

2

[9]

(b) (i) Marking principles

1 mark for complete piece transcribed;

Correct answer UGU CAU GAA UGC UAG

		1 mark for complementary bases from sequence transcribed; but allow 1 mark for complementary bases from section transcribed, providing all four bases are involved						
			2					
		 (ii) Marking principle 1 mark for bases corresponding to exons taken from (b)(i) Correct answer UGU UGC UAG If sequence is incorrect in (b)(i), award mark if section is from exons. Ignore gaps. 	1					
		[5] (a) (i) <u>D</u>	eoxyribose;					
16	oentos	se / 5C sugar = neutral						
		(ii) Phosphate / Phosphoric acid;						
		phosphorus / P = neutral	1					
	(4)		1					
	(b)	Hydrogen (bonds);	1					
	(C)	381 / 384 / 387;						
			1					
	(d)	(GIn) Met Met Arg Arg Arg Asn;	1					
	(\mathbf{a})	Change in (acquence of) omine soide (primery structure)						
	(e)	Change in (sequence of) amino acids / primary structure;						
		Change in hydrogen / ionic / disulfide bonds leads to change in tertiary structure / active site (of enzyme);						
		Substrate cannot bind / no enzyme-substrate complexes form;						
		Q Reject = different amino acids are formed	3					
		[8] (a)	Phosphate;					
17								
_		Deoxyribose;						
		Q Candidates must specify deoxyribose. This term is a specification requirement.						
		Ignore anything that is not incorrect.	2					
			2					
	(b)	4;	1					
	(c)	(i) 14;						
	. /		1					

		(ii) 36; If (c)(i) incorrect accept [50 – (c)(i)]		
	<i>(</i> 1)			1
	(d)	Different genes;		
		Different (DNA) base sequences;		2
			[7] (a)	a length of DNA;
18 th	nat co	des for a single protein / polypeptide;		
				2
	(b)	by heating;to break the H-bonds (between complementary bases);		
				2
	(c)	 to allow the DNA polymerase to attach / start addition ofnucleotides / mark start and end of sequence to be copied / prevents strands re-joining; 		
		prevento strantos re-joining,		1
		 because the sequences at the ends of the target sequence are different / one is at the beginning and one at the end; 		
				1
	(d)	8; accept 7		
				1
				[7]
40	(a)	(i) actin (<i>Accept</i> tropomyosin);		
19				1
		(ii) myosin head;		1
				1
	(b)	 (i) Ca²⁺ binds to [part of] the actin / troponin; this causes tropomyosin to be displaced; 		
		uncovers [myosin] binding sites [on actin] / allows actin to bind;		•
				max 2
		 myosin heads bind to actin / cross bridge formation /actomyosin formed; myosin heads / crossbridges swivel / ratchet mechanism; causing actin to slide relative to myosin; energy provided by 	;	
		hydrolysis of ATP;		max 3
		(i) (number lightly stained fibres (tetal success of fibres) 400		mux 5
	(c)	 (i) (number lightly stained fibres / total number of fibres) × 100; (actual numbers are 10 / 18 × 100) 		
				1

		(ii)	sample not representative / large enough / individual muscle fibresdifferent sizes / contain different number of myofibrils;		
				1	
	(d)	all s	ome stain = 1 fast dark and slow lighter = 2	2	
	(e)	the g	nge in base sequence in DNA / addition / deletion / substitution of a base in DNAof gene which codes for myosin; change in amino acid sequence / primary structure; ses a different tertiary structure; which alters the binding properties of myosin;	4 [1]	5]
_	(a)	(i)	join / attach nucleotides, to form a strand / along backbone / phosphodiester bonds	;	
20			(reject reference to H bonds, complementary base pairing)	1	
		(ii)	ribosome / RER;	1	
	(b)	(i)	CGTTACCAA;	1	
		(ii)	CGU UAC CAA;	1	
	(c)	<u>subs</u>	stitution;	1	
	(d)	(i)	alanine;	1	
		(ii)	(mutation 1) no change(to sequence of amino acids); codon for alanine / degenerate codon / same amino acid coded for;	2	
			(mutation 2) (change in sequence) <u>valine</u> replaced by <u>alanine / </u> codon for <u>alanine;</u> folding / shape / tertiary structure / position of bonds may change; <i>(reject peptide bonds)</i>		
			[10] (a) high energy radiation / ionising	2 particle	s'
					2,

21

named particles / α, β, γ; colchicine; x rays / cosmic rays; uv (light); carcinogen / named carcinogen; mustard gas / phenols / tar (qualified);

1 max

- (b) (i) removal of one or more bases / nucleotide; frameshift / (from point of mutation) base sequence change;
 - sequence of bases in mRNA would change;
 (sequence of) amino acids different / different primary structure;
 (active site / enzyme 1) changed tertiary shape / changed active sites; <u>white</u> pigment does not bind; lilac pigment not produced / white pigment remains unchanged / enzyme 1 does not function;
 - (iii) blue and lilac; white;

change in base / nucleotide (in DNA);

22

change in base sequence of mRNA / change in codons / idea of frameshift following deletion or addition / incorrect tRNA / anticodon; incorrect amino acids / different primary structure / fomation of new stop codon; different tertiary structure / different 3D structure / different polypeptide / shortened polypeptide; different shape of active site / no active site present;

[5] (i) mRNA attaches to ribosome;

23

codon on mRNA; binds to an anti-codon on tRNA; each tRNA brings a specific amino acid; sequence of codons / bases on mRNA determines order of amino acids; formation of peptide bonds / amino acids joined by condensation reactions;

 (iii) inserted gene / mRNA complementary to normal gene / mRNA; binds to it to prevent protein synthesis / form double strand / prevents mRNA binding to ribosomes; will not stop all translation, some mRNA reaches ribosomes / because not all mRNA is bound by inserted gene mRNA; 4 max

2

[9]

4 max

(a) mutation changes the amino acid sequence / primary structure of Factor VIII protein;24 changes the tertiary structure / 3D shape;

- (b) (mutant) Factor VIII protein is non-functional / does not work with Factor IX;so no conversion of Factor X to active form and pathway blocked;
- boy's blood contains (active) Factor VIII;
 Factor VIII haemophiliac's blood contains (active) Factor IX;
 the mixture has both Factors and so the pathway can complete / blood clots;

2 max

2

2

[6]