

3.4 Further Trigonometry

Contents

★ 3.4.1 The Unit Circle

✤ 3.4.2 Exact Values

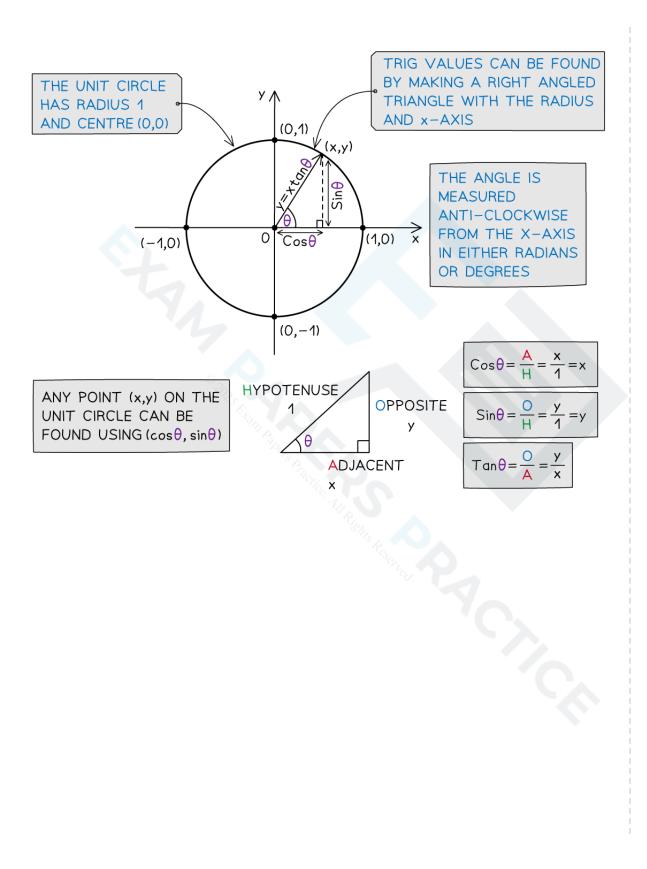
For more help, please visit <u>www.exampaperspractice.co.uk</u>

3.4.1 The Unit Circle

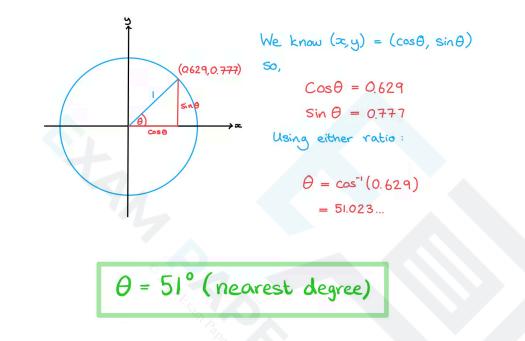
Defining Sin, Cos and Tan

What is the unit circle?

- The unit circle is a circle with radius 1 and centre (0, 0)
- Angles are always measured from the positive x-axis and turn:
 - anticlockwise for positive angles
 - clockwise for negative angles
- It can be used to calculate trig values as a coordinate point (x, y) on the circle
 - Trig values can be found by making a right triangle with the radius as the hypotenuse
 - Where θ is the angle measured anticlockwise from the positive x-axis
 - The x-axis will always be adjacent to the angle, θ
- SOHCAHTOA can be used to find the values of sinθ, cosθ and tanθ easily
- As the radius is 1 unit
 - the **x coordinate** gives the value of **cos0**
 - the **y coordinate** gives the value of **sin0**
- As the origin is one of the end points dividing the y coordinate by the x coordinate gives the gradient
 - the gradient of the line gives the value of tan0
- It allows us to calculate sin, cos and tan for angles greater than 90° ($\frac{\pi}{2}$ rad)



The coordinates of a point on a unit circle, to 3 significant figures, are (0.629, 0.777). Find θ° to the nearest degree.



Using The Unit Circle

What are the properties of the unit circle?

- The unit circle can be split into four **quadrants** at every 90° ($\frac{\pi}{2}$ rad)
 - The first quadrant is for angles between 0 and 90°
 - All three of Sin θ , Cos θ and Tan θ are positive in this quadrant
 - The second quadrant is for angles between 90° and 180° ($\frac{\pi}{2}$ rad and π rad)
 - **S**in θ is positive in this quadrant
 - The third quadrant is for angles between 180° and 270° (π rad and $\frac{3\pi}{2}$)
 - Tanθ is positive in this quadrant
 - The fourth quadrant is for angles between 270° and 360° ($\frac{3\pi}{2}$ rad and 2π)
 - Cosθ is positive in this quadrant
 - Starting from the **fourth** quadrant (on the bottom right) and working anti-clockwise the positive trig functions spell out **CAST**
 - This is why it is often thought of as the **CAST** diagram
 - You may have your own way of remembering this
 - A popular one starting from the first quadrant is All Students Take Calculus
 - To help picture this better try sketching all three trig graphs on one set of axes and look at which graphs are positive in each 90° section

How is the unit circle used to find secondary solutions?

- Trigonometric functions have more than one input to each output
 - For example sin 30° = sin 150° = 0.5
 - This means that trigonometric equations have more than one solution
 - For example both 30° and 150° satisfy the equation $\sin x = 0.5$
- The unit circle can be used to find all solutions to trigonometric equations in a given interval
 - Your calculator will only give you the first solution to a problem such as $x = \sin^{-1}(0.5)$
 - This solution is called the primary value
 - However, due to the **periodic** nature of the trig functions there could be an infinite number of solutions
 - Further solutions are called the **secondary values**
 - This is why you will be given a **domain** in which your solutions should be found
 - This could either be in degrees or in radians
 - If you see π or some multiple of π then you must work in radians
- The following steps may help you use the unit circle to find **secondary values**

STEP 1: Draw the angle into the first quadrant using the x or y coordinate to help you

• If you are working with sin *x* = *k*, draw the line from the origin to the circumference of the circle at the point where the **y coordinate** is *k*

- If you are working with cos x = k, draw the line from the origin to the circumference of the circle at the point where the x coordinate is k
- If you are working with tan x = k, draw the line from the origin to the circumference of the circle such that the gradient of the line is k
 - This will give you the angle which should be measured from the **positive x-axis..**
 - ... anticlockwise for a positive angle
 - ... clockwise for a negative angle

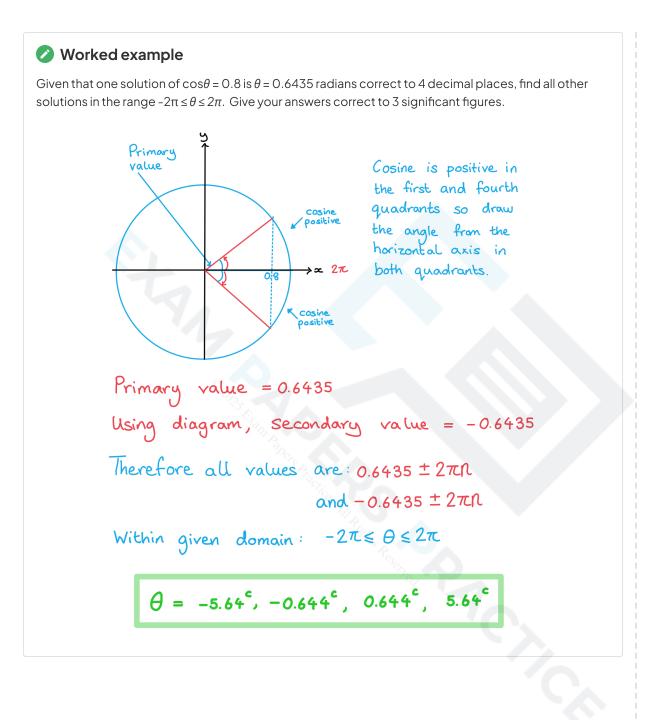
STEP 2: Draw the radius in the other quadrant which has the same...

- ... x-coordinate if solving $\cos x = k$
 - This will be the quadrant which is vertical to the original quadrant
- ... y-coordinate if solving sin x = k
 - This will be the quadrant which is horizontal to the original quadrant
- ... gradient if solving tan x = k
 - This will be the quadrant diagonal to the original quadrant

STEP 3: Work out the size of the second angle, measuring from the positive x-axis

- ... anticlockwise for a positive angle
- ... clockwise for a negative angle
 - You should look at the given range of values to decide whether you need the negative or positive angle

STEP 4: Add or subtract either 360° or 2π radians to both values until you have all solutions in the required range



3.4.2 Exact Values

Trigonometry Exact Values

What are exact values in trigonometry?

- For certain angles the values of $\sin \theta$, $\cos \theta$ and $\tan \theta$ can be written **exactly**
 - This means using fractions and surds
 - You should be familiar with these values and be able to derive the values using geometry
- You are expected to know the exact values of sin, cos and tan for angles of 0°, 30°, 45°, 60°, 90°, 180° and their multiples
 - In radians this is $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi$ and their multiples
- The exact values you are expected to know are here:

Angle (degrees)	0	30	45	60	90	120	135	150	180	210	225	240	270	300	315	330	360
Angle (Radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0
COS	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
tan	0	$\frac{1}{\sqrt{3}}$	1	√3	UD	-√3	-1	$-\frac{1}{\sqrt{3}}$	0 0	$\frac{1}{\sqrt{3}}$	1	√3	UD	-√3	-1	$-\frac{1}{\sqrt{3}}$	0
CSC	UD	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	UD	-2	-√2	$-\frac{2}{\sqrt{3}}$	-1	$-\frac{2}{\sqrt{3}}$	-√2	-2	UD
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	UD	-2	-√2	$-\frac{2}{\sqrt{3}}$	-1	$-\frac{2}{\sqrt{3}}$	-√2	-2	UD	2	√2	$\frac{2}{\sqrt{3}}$	1
cot	UD	√3	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	-√3	UD	√3	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	-√3	UD

UD -> Undefined

How do I find the exact values of other angles?

- The exact values for sin and cos can be seen on the **unit circle** as the y and x coordinates respectively
 - If using the coordinates on the unit circle to memorise the exact values, remember that cos comes
 before sin
- The unit circle can also be used to find exact values of other angles using symmetry
- If you know the exact value for an angle in the first quadrant you can draw the same angle from the xaxis in any other quadrant to find other angles
- Remember that the angles are **measured anticlockwise** from the positive x-axis
- For example if you know that the exact value for is 0.5

- draw the angle 30° from the horizontal in the three other quadrants
- measuring from the positive x-axis you have the angles of 150°, 210° and 330°
 - sin is positive in the second quadrant so sin150° = 0.5
 - sin is negative in the third quadrant so sin210° = -0.5
 - sin is negative in the fourth quadrant so sin330° = -0.5
- It is also possible to find the **negative** angles by measuring **clockwise** from the positive x-axis
 - draw the angle 30° from the horizontal in the three other quadrants
 - measuring **clockwise** from the positive x-axis you have the angles of -30°, -150°, -210° and -330°
 - sin is negative in the fourth quadrant so sin(-30°) = -0.5
 - sin is negative in the third quadrant so sin(-150°) = -0.5
 - sin is positive in the second quadrant so sin(-210°) = 0.5
 - sin is positive in the fourth quadrant so sin(-330°) = 0.5

How are exact values in trigonometry derived?

- There are two special right-triangles that can be used to derive all of the exact values you need to know
- Consider a right-triangle with a hypotenuse of 2 units and a shorter side length of 1 unit
 - Using Pythagoras' theorem the third side will be $\sqrt{3}$
 - The angles will be $\frac{\pi}{2}$ radians (90°), $\frac{\pi}{3}$ radians (60°) and $\frac{\pi}{6}$ radians (30°)
 - Using SOHCAHTOA gives...

•
$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
 $\sin \frac{\pi}{6} = \frac{1}{2}$

$$\cos\frac{\pi}{3} = \frac{1}{2} \qquad \cos\frac{\pi}{6} = \frac{1}{2}$$

$$Tan \frac{\pi}{3} = \sqrt{3}$$
 $Tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

- Consider an isosceles triangle with two equal side lengths (the opposite and adjacent) of 1 unit
 - Using Pythagoras' theorem it will have a hypotenuse of $\sqrt{2}$
 - The two equal angles will be $\frac{\pi}{4}$ radians (45°)
 - Using SOHCAHTOA gives...

•
$$\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

• $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
• $\tan \frac{\pi}{4} = 1$

