

Page 1 of 41

3.4 Searching algorithms Mark Scheme

Page 2 of 41

Mark schemes

Q1.
(a) (i) Mark is for AO3 (programming)

Selection structure with correct condition(s) (9, 23) added in suitable
place and value of 4 assigned to two tiles in the dictionary;

R. if any other tile values changed
1

Python 2
def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

Python 3
def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

Visual Basic
Function CreateTileDictionary() As Dictionary(Of Char,

Integer)

 Dim TileDictionary As New Dictionary(Of Char, Integer)()

 For Count = 0 To 25

 If Array.IndexOf({0, 4, 8, 13, 14, 17, 18, 19}, Count)

> -1 Then

 TileDictionary.Add(Chr(65 + Count), 1)

 ElseIf Array.IndexOf({1, 2, 3, 6, 11, 12, 15, 20}, Count)

> -1 Then

 TileDictionary.Add(Chr(65 + Count), 2)

 ElseIf Array.IndexOf({5, 7, 10, 21, 22, 24},

 Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 3)

 ElseIf Array.IndexOf({9, 23}, Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 4)

 Else

Page 3 of 41

 TileDictionary.Add(Chr(65 + Count), 5)

 End If

 Next

 Return TileDictionary

End Function

C#
private static void CreateTileDictionary(ref Dictionary<char,

int> TileDictionary)

{

 int[] Value1 = { 0, 4, 8, 13, 14, 17, 18, 19 };

 int[] Value2 = { 1, 2, 3, 6, 11, 12, 15, 20 };

 int[] Value3 = { 5, 7, 10, 21, 22, 24 };

 int[] Value4 = { 9, 23 };

 for (int Count = 0; Count < 26; Count++)

 {

 if (Value1.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 1);

 }

 else if (Value2.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 2);

 }

 else if (Value3.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 3);

 }

 else if (Value4.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 4);

 }

 else

 {

 TileDictionary.Add((char)(65 + Count), 5);

 }

 }

}

Java
Map createTileDictionary()

{

 Map<Character,Integer> tileDictionary = new

HashMap<Character,Integer>();

 for (int count = 0; count < 26; count++)

 {

 switch (count) {

 case 0:

 case 4:

 case 8:

 case 13:

 case 14:

 case 17:

 case 18:

 case 19:

 tileDictionary.put((char)(65 + count), 1);

 break;

 case 1:

 case 2:

 case 3:

 case 6:

 case 11:

Page 4 of 41

 case 12:

 case 15:

 case 20:

 tileDictionary.put((char)(65 + count), 2);

 break;

 case 5:

 case 7:

 case 10:

 case 21:

 case 22:

 case 24:

 tileDictionary.put((char)(65 + count), 3);

 break;

 case 9:

 case 23:

 tileDictionary.put((char)(65 + count), 4);

 break;

 default:

 tileDictionary.put((char)(65 + count), 5);

 break;

 }

 }

 return tileDictionary;

}

Pascal / Delphi
function CreateTileDictionary() : TTileDictionary;

 var

 TileDictionary : TTileDictionary;

 Count : integer;

 begin

 TileDictionary := TTileDictionary.Create();

 for Count := 0 to 25 do

 begin

 case count of

 0, 4, 8, 13, 14, 17, 18, 19:

TileDictionary.Add(chr(65 + count), 1);

 1, 2, 3, 6, 11, 12, 15, 20: TileDictionary.Add(chr(65

+ count), 2);

 5, 7, 10, 21, 22, 24: TileDictionary.Add(chr(65 +

count), 3);

 9, 23: TileDictionary.Add(chr(65 + count), 4);

 else TileDictionary.Add(chr(65 + count), 5);

 end;

 end;

 CreateTileDictionary := TileDictionary;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (a)(i), including prompts on screen capture
matching those in code.
Code for part (a)(i) must be sensible.

Screen captures showing the requested test being performed and the
correct points values for J, X, Z and Q are shown; I. order of letters

TILE VALUES

Points for X: 4

Points for R: 1

Page 5 of 41

Points for Q: 5

Points for Z: 5

Points for M: 2

Points for K: 3

Points for A: 1

Points for Y: 3

Points for L: 2

Points for I: 1

Points for F: 3

Points for H: 3

Points for D: 2

Points for U: 2

Points for N: 1

Points for V: 3

Points for T: 1

Points for E: 1

Points for W: 3

Points for C: 2

Points for G: 2

Points for P: 2

Points for J: 4

Points for O: 1

Points for B: 2

Points for S: 1

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

1

(b) (i) All marks for AO3 (programming)

Iterative structure with one correct condition added in suitable place;

Iterative structure with second correct condition and logical connective;

Suitable prompt displayed inside iterative structure or in appropriate
place before iterative structure; A. any suitable prompt

StartHandSize assigned user-entered value inside iterative structure;

Max 3 if code contains errors
4

Python 2
…

 StartHandSize = int(raw_input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(raw_input("Enter start hand size: "))

…

Python 3
…

 StartHandSize = int(input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(input("Enter start hand size: "))

…

Visual Basic

Page 6 of 41

…

Do

 Console.Write("Enter start hand size: ")

 StartHandSize = Console.ReadLine()

Loop Until StartHandSize >= 1 And StartHandSize <= 20

…

C#
…

do

{

 Console.Write("Enter start hand size: ");

 StartHandSize = Convert.ToInt32(Console.ReadLine());

} while (StartHandSize < 1 || StartHandSize > 20);

…

Java
…

 do {

 Console.println(&"Enter start hand size: &");

 startHandSize = Integer.parseInt(Console.readLine());

 } while (startHandSize < 1 || startHandSize > 20);

…

Pascal / Delphi
…

StartHandSize := 0;

Choice := '';

while (StartHandSize < 1) or (StartHandSize > 20) do

 begin

 write('Enter start hand size: ');

 readln(StartHandSize);

 end;

…

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (b)(i), including prompts on screen capture
matching those in code.
Code for part (b)(i) must be sensible.

Screen capture(s) showing that after the values 0 and 21 are entered the
user is asked to enter the start hand size again and then the menu is
displayed;

++++++++++++++++++++++++++++++++++++++

+ Welcome to the WORDS WITH AQA game +

++++++++++++++++++++++++++++++++++++++

Enter start hand size: 0

Enter start hand size: 21

Enter start hand size: 5

=========

MAIN MENU

=========

1. Play game with random start hand

2. Play game with training start hand

Page 7 of 41

9. Quit

Enter your choice: 1

Player One it is your turn.

1

(c) (i) All marks for AO3 (programming)

1. Create variables to store the current start, mid and end points; A. no
variable for midpoint if midpoint is calculated each time it is needed in
the code

2. Setting correct initial values for start and end variables;
3. Iterative structure with one correct condition (either word is valid or

start is greater than end); R. if code is a linear search
4. Iterative structure with 2nd correct condition and correct logic;
5. Inside iterative structure, correctly calculate midpoint between start

and end;

A. mid-point being either the position before or the position after
the exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. Inside iterative structure there is a selection structure that
compares word at midpoint position in list with word being
searched for;

7. Values of start and end changed correctly under correct
circumstances;

8. True is returned if match with midpoint word found and True is not
returned under any other circumstances;

I. missing statement to display current word

Max 7 if code contains errors

Alternative answer using recursion

1. Create variable to store the current midpoint, start and end points
passed as parameters to subroutine; A. no variable for midpoint if
midpoint is calculated each time it is needed in the code A. midpoint as
parameter instead of as local variable

2. Initial subroutine call has values of 0 for startpoint parameter and
number of words in AllowedWords for endpoint parameter;

3. Selection structure which contains recursive call if word being
searched for is after word at midpoint;

4. Selection structure which contains recursive call if word being
searched for is before word at midpoint;

5. Correctly calculate midpoint between start and end;
A. midpoint being either the position before or the position after the
exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. There is a selection structure that compares word at midpoint
position in list with word being searched for and there is no
recursive call if they are equal with a value of True being returned;

7. In recursive calls the parameters for start and end points have

correct values;

Page 8 of 41

8. There is a selection structure that results in no recursive call and
False being returned if it is now known that the word being
searched for is not in the list;

Note for examiners: mark points 1, 2, 7 could be replaced by recursive
calls that appropriately half the number of items in the list of words
passed as a parameter – this would mean no need for start and end
points. In this case award one mark for each of the two recursive calls if
they contain the correctly reduced lists and one mark for the correct use
of the length function to find the number of items in the list. These marks

should not be awarded if the list is passed by reference resulting in the
original list of words being modified.

I. missing statement to display current word

Max 7 if code contains errors

Note for examiners: refer unusual solutions to team leader
8

Python 2
def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print AllowedWords[Mid]

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

Python 3
def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print(AllowedWords[Mid])

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

Visual Basic
Function CheckWordIsValid(ByVal Word As String, ByRef

AllowedWords As List(Of String)) As Boolean

 Dim ValidWord As Boolean = False

 Dim LStart As Integer = 0

 Dim LMid As Integer

 Dim LEnd As Integer = Len(AllowedWords) - 1

 While Not ValidWord And LStart <= LEnd

 LMid = (LStart + LEnd) \ 2

Page 9 of 41

 Console.WriteLine(AllowedWords(LMid))

 If AllowedWords(LMid) = Word Then

 ValidWord = True

 ElseIf Word > AllowedWords(LMid) Then

 LStart = LMid + 1

 Else

 LEnd = LMid - 1

 End If

 End While

 Return ValidWord

End Function

C#
private static bool CheckWordIsValid(string Word,

List<string> AllowedWords)

{

 bool ValidWord = false;

 int Start = 0;

 int End = AllowedWords.Count - 1;

 int Mid = 0;

 while (!ValidWord && Start <= End)

 {

 Mid = (Start + End) / 2;

 Console.WriteLine(AllowedWords[Mid]);

 if (AllowedWords[Mid] == Word)

 {

 ValidWord = true;

 }

 else if (string.Compare(Word, AllowedWords[Mid]) > 0)

 {

 Start = Mid + 1;

 }

 else

 {

 End = Mid -1;

 }

 }

 return ValidWord;

}

Java
boolean checkWordIsValid(String word, String[] allowedWords)

{

 boolean validWord = false;

 int start = 0;

 int end = allowedWords.length - 1;

 int mid = 0;

 while (!validWord && start <= end)

 {

 mid = (start + end) / 2;

 Console.println(allowedWords[mid]);

 if (allowedWords[mid].equals(word))

 {

 validWord = true;

 }

 else if (word.compareTo(allowedWords[mid]) > 0)

 {

 start = mid + 1;

 }

 else

 {

 end = mid -1;

 }

Page 10 of 41

 }

 return validWord;

}

Pascal / Delphi
function CheckWordIsValid(Word : string; AllowedWords : array

of string) : boolean;

 var

 ValidWord : boolean;

 Start, Mid, EndValue : integer;

 begin

 ValidWord := False;

 Start := 0;

 EndValue := length(AllowedWords) - 1;

 while (not(ValidWord)) and (Start <= EndValue) do

 begin

 Mid := (Start + EndValue) div 2;

 writeln(AllowedWords[Mid]);

 if AllowedWords[Mid] = Word then

 ValidWord := True

 else if Word > AllowedWords[Mid] then

 Start := Mid + 1

 else

 EndValue := Mid - 1;

 end;

 CheckWordIsValid := ValidWord;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (c)(i), including prompts on screen capture
matching those in code.
Code for part (c)(i) must be sensible.

R. if comparison words not shown in screen capture r

Screen capture(s) showing that the word “jars” was entered and the
words “MALEFICIAL”, “DONGLES”, “HAEMAGOGUE”,

“INTERMINGLE”, “LAGGER”, “JOULED”, “ISOCLINAL”, “JAUKING”,
“JACARANDA”, “JAMBEUX”, “JAPONICA”, “JAROVIZE”, “JASPER”,
“JARTA”, “JARRAH”, “JARRINGLY”, “JARS” are displayed in that order;

A. “MALEFICIAL”, “DONGOLA”, “HAEMAGOGUES”,
“INTERMINGLED”, “LAGGERS”, “JOULING”, “ISOCLINE”, “JAUNCE”,
“JACARE”, “JAMBING”, “JAPPING”, “JAROVIZING”, “JASPERISES”,
“JARVEY”, “JARRINGLY”, “JARTA”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

ALTERNATIVE ANSWERS (for different versions of text file)

Screen capture(s) showing that the word “jars” was entered and the
words “MALEATE”, “DONDER”, “HADST”, “INTERMENDIS”, “LAGAN”,
“JOTTERS”, “ISOCHROMATIC”, “JASPERS”, “JABBING”, “JALOUSIE”,

“JAPANISES”, “JARGOONS”, “JARRED”, “JASIES”, “JARUL”, “JARS”
are displayed in that order;

A. “MALEATE”, “DONDERED”, “HAE”, “INTERMEDIUM”, “LAGANS”,
“JOTTING”, “ISOCHROMOSONES”, “JASPERWARES”, “JABBLED”,
“JALOUSING”, “JAPANIZED”, “JARINA”, “JARRINGS”, “JASMINES”,

Page 11 of 41

“JARVEYS”, “JARTAS”, “JARSFUL”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

Screen capture(s) showing that the word “jars” was entered and the
words “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATION”,
“JOURNALS”, “JAMAICA”, “JEWELLERY”, “JEAN”, “JAR”, “JAY”,
“JASON”, “JARS” are displayed in that order;

A. “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATIONS”, “JOURNEY”,
“JAMIE”, “JEWISH”, “JEEP”, “JAVA”, “JAPAN”, “JARS” being displayed
if alternative answer for mark point 5 in part (c)(i) used

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>jars

MALEFICIAL

DONGLES

HAEMAGOGUE

INTERMINGLE

LAGGER

JOULED

ISOCLINAL

JAUKING

JACARANDA

JAMBEUX

JAPONICA

JAROVIZE

JASPER

JARTA

JARRAH

JARRINGLY

JARS

Valid word

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR

 replace the tiles you used and get three extra tiles (3) OR

 get no new tiles (4)?

>

1

(d) (i) All marks for AO3 (programming)

1. Creating new subroutine called CalculateFrequencies with

appropriate interface; R. if spelt incorrectly I. case
2. Iterative structure that repeats 26 times (once for each letter in the

alphabet);
3. Iterative structure that looks at each word in AllowedWords;

4. Iterative structure that looks at each letter in a word and suitable
nesting for iterative structures;

5. Selection structure, inside iterative structure, that compares two

letters;
A. use of built-in functions that result in same functionality as mark
points 4 and 5;;

Page 12 of 41

6. Inside iterative structure increases variable used to count
instances of a letter;

7. Displays a numeric count (even if incorrect) and the letter for each
letter in the alphabet; A. is done in sensible place in
DisplayTileValues

8. Syntactically correct call to new subroutine from
DisplayTileValues; A. any suitable place for subroutine call

Alternative answer
If answer looks at each letter in AllowedWords in turn and maintains a

count (eg in array/list) for the number of each letter found then mark
points 2 and 5 should be:
2. Creation of suitable data structure to store 26 counts.

5. Appropriate method to select count that corresponds to current
letter.

Max 7 if code contains errors
8

Python 2
def CalculateFrequencies(AllowedWords):

 print "Letter frequencies in the allowed words are:"

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 b>LetterCount += 1

 sys.stdout.write(LetterToFind + " " + LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 sys.stdout.write("Points for " + Letter + ": " +

str(Points) + "\n")

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer
def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 sys.stdout.write(Letter + " " + str(Count))

Alternative answer
def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 sys.stdout.write(chr(a + 65) + " " + str(Counts[a]))

Page 13 of 41

Python 3
def CalculateFrequencies(AllowedWords):

 print("Letter frequencies in the allowed words are:")

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 LetterCount += 1

 print(LetterToFind, " ", LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 print("Points for " + Letter + ": " + str(Points))

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer
def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 print(Letter,Count)

Alternative answer
def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 print(chr(a + 65), Counts[a])

Visual Basic
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim LetterCount As Integer

 Dim LetterToFind As Char

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Code = 0 To 25

 LetterCount = 0

 LetterToFind = Chr(Code + 65)

 For Each Word In AllowedWords

 For Each Letter In Word

 If Letter = LetterToFind Then

 LetterCount += 1

 End If

 Next

 Next

 Console.WriteLine(LetterToFind & " " & LetterCount)

 Next

End Sub

Sub DisplayTileValues(ByVal TileDictionary As Dictionary(Of

Page 14 of 41

Char, Integer), ByRef AllowedWords As List(Of String))

 Console.WriteLine()

 Console.WriteLine("TILE VALUES")

 Console.WriteLine()

 For Each Tile As KeyValuePair(Of Char, Integer) In

 TileDictionary

 Console.WriteLine("Points for " & Tile.Key & ": " &

Tile.Value)

 Next

 Console.WriteLine()

 CalculateFrequencies(AllowedWords)

End Sub

Alternative answer
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim NumberOfTimes, Count As Integer

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Each Letter In "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 Count = 0

 For Each Word In AllowedWords

 NumberOfTimes = Word.Split(Letter).Length - 1

 Count += NumberOfTimes

 Next

 Console.WriteLine(Letter & " " & Count)

 Next

End Sub

Alternative answer
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim Counts(25) As Integer

 For Count = 0 To 25

 Counts(Count) = 0

 Next

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Each Word In AllowedWords

 For Each Letter In Word

 Counts(Asc(Letter) - 65) += 1

 Next

 Next

 For count = 0 To 25

 Console.WriteLine(Chr(count + 65) & " " & Counts(count))

 Next

End Sub

C#
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed words

are:");

 int LetterCount = 0;

 char LetterToFind;

 for (int Code = 0; Code < 26; Code++)

 {

 LetterCount = 0;

 LetterToFind = (char)(Code + 65);

 foreach (var Word in AllowedWords)

 {

 foreach (var Letter in Word)

Page 15 of 41

 {

 if (Letter == LetterToFind)

 {

 LetterCount++;

 }

 }

 }

 Console.WriteLine(LetterToFind + " " + LetterCount);

 }

}

private static void DisplayTileValues(Dictionary<char, int>

TileDictionary, List<string> AllowedWords)

{

 Console.WriteLine();

 Console.WriteLine("TILE VALUES");

 Console.WriteLine();

 char Letter;

 int Points;

 foreach (var Pair in TileDictionary)

 {

 Letter = Pair.Key;

 Points = Pair.Value;

 Console.WriteLine("Points for " + Letter + ": " + Points);

 }

 CalculateFrequencies(AllowedWords);

 Console.WriteLine();

}

Alternative answer
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed words

are:");

 int LetterCount = 0;

 string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 foreach (var Letter in Alphabet)

 {

 LetterCount = 0;

 foreach (var Words in AllowedWords)

 {

 LetterCount = LetterCount + (Words.Split(Letter).Length

- 1);

 }

 Console.WriteLine(Letter + " " + LetterCount);

 }

}

Alternative answer
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 List<int> Counts = new List<int>() ;

 for (int i = 0; i < 26; i++)

 {

 Counts.Add(0);

 }

 foreach (var Words in AllowedWords)

 {

 foreach (var Letter in Words)

 {

 Counts[(int)Letter - 65]++;

Page 16 of 41

 }

 }

 for (int a = 0; a < 26; a++)

 {

 char Alpha =Convert.ToChar(a + 65);

 Console.WriteLine(Alpha + " " + Counts[a]);

 }

}

Java
void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 char letterToFind;

 for (int count = 0; count < 26; count++)

 {

 letterCount = 0;

 letterToFind = (char)(65 + count);

 for(String word:allowedWords)

 {

 for(char letter : word.toCharArray())

 {

 if(letterToFind == letter)

 {

 letterCount++;

 }

 }

 }

 Console.println(letterToFind + ", Frequency: " +

letterCount);

 }

}

void displayTileValues(Map tileDictionary, String[]

allowedWords)

{

 Console.println();

 Console.println("TILE VALUES");

 Console.println();

 for (Object letter : tileDictionary.keySet())

 {

 int points = (int)tileDictionary.get(letter);

 Console.println("Points for " + letter + ": " + points);

 }

 calculateFrequencies(allowedWords);

 Console.println();

}

Alternative answer
void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 for(char letter: alphabet.toCharArray())

 {

 letterCount = 0;

 for(String word: allowedWords)

 {

 letterCount += word.split(letter + "").length - 1;

 }

 Console.println(letter + ", Frequency: " + letterCount);

 }

}

Page 17 of 41

Alternative answer
void calculateFrequencies(String[] allowedWords)

{

 int[] counts = new int[26];

 for(String word: allowedWords)

 {

 for(char letter: word.toCharArray())

 {

 int letterPostion = (int)letter - 65;

 counts[letterPostion]++;

 }

 }

 for (int count = 0; count < 26; count++)

 {

 char letter = (char)(65 + count);

 Console.println(letter + ", Frequency: " + counts[count]);

 }

}

Pascal / Delphi
procedure CalculateFrequencies(AllowedWords : array of

string);

 var

 Code, LetterCount : integer;

 LetterToFind, Letter : char;

 Word : string;

 begin

 writeln('Letter frequencies in the allowed words are:');

 for Code := 0 to 25 do

 begin

 LetterCount := 0;

 LetterToFind := chr(65 + Code);

 for Word in AllowedWords do

 begin

 for Letter in Word do

 begin

 if Letter = LetterToFind then

 LetterCount := LetterCount + 1;

 end;

 end;

 writeln(LetterToFind, ' ', LetterCount);

 end;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (d)(i), including prompts on screen capture
matching those in code.

Code for part (d)(i) must be sensible.

Screen capture(s) showing correct list of letter frequencies are
displayed;

I. Ignore order of letter frequency pairs
I. any additional output eg headings like “Letter” and “Count”
Letter frequencies in the allowed words are:

A 188704

B 44953

C 98231

D 81731

E 275582

Page 18 of 41

F 28931

G 67910

H 60702

I 220483

J 4010

K 22076

L 127865

M 70700

N 163637

O 161752

P 73286

Q 4104

R 170522

S 234673

T 159471

U 80636

V 22521

W 18393

X 6852

Y 39772

Z 11772

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

ALTERNATIVE ANSWERS (for different versions of text file)

Letter frequencies in the allowed words are:

A 188627

B 44923

C 98187

D 81686

E 275478

F 28899

G 67795

H 60627

I 220331

J 4007

K 22028

L 127814

M 70679

N 163547

O 161720

P 73267

Q 4104

R 170461

S 234473

T 159351

U 80579

V 22509

W 18377

X 6852

Y 39760

Z 11765

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

Page 19 of 41

Letter frequencies in the allowed words are:

A 5299

B 1105

C 2980

D 2482

E 7523

F 909

G 1692

H 1399

I 5391

J 178

K 569

L 3180

M 1871

N 4762

O 4177

P 1992

Q 122

R 4812

S 4999

T 4695

U 1898

V 835

W 607

X 246

Y 999

Z 128

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

1

(e) (i) All marks for AO3 (programming)

Modifying subroutine UpdateAfterAllowedWord:

1. Correct subroutine call to GetScoreForWordAndPrefix added in

UpdateAfterAllowedWord;

2. Result returned by GetScoreForWordAndPrefix added to
PlayerScore;

A. alternative names for subroutine GetScoreForWordAndPrefix if

match name of subroutine created

Creating new subroutine:
3. Subroutine GetScoreForWordAndPrefix created; R. if spelt

incorrectly I. case
4. All data needed (Word, TileDictionary, AllowedWords) is

passed into subroutine via interface;
5. Integer value always returned by subroutine;

Base case in subroutine:

6. Selection structure for differentiating base case and recursive case
with suitable condition (word length of 0 // 1 // 2); R. if base case

will result in recursion

Page 20 of 41

7. If base case word length is 0 then value of 0 is returned by
subroutine and there is no recursive call // if base case word length
is 1 then value of 0 is returned by subroutine and there is no
recursive call // if base case word length is 2 the subroutine returns
0 if the two-letter word is not a valid word and returns the score for
the two-letter word if it is a valid word;

Recursive case in subroutine:

8. Selection structure that contains code that adds value returned by
call to GetScoreForWord to score if word is valid; A. no call to

subroutine GetScoreForWord if correct code to calculate score

included in sensible place in GetScoreForWordAndPrefix

subroutine R. if no check for word being valid
9. Call to GetScoreForWordAndPrefix;

10. Result from recursive call added to score;
11. Recursion will eventually reach base case as recursive call has a

parameter that is word with last letter removed;

How to mark question if no attempt to use recursion:

Mark points 1-5 same as for recursive attempt. No marks awarded for
mark points 6-11, instead award marks as appropriate for mark points
12-14.
12. Adds the score for the original word to the score once // sets the

initial score to be the score for the original word; A. no call to
subroutine GetScoreForWord if correct code to calculate score

included in sensible place in GetScoreForWordAndPrefix

subroutine. Note for examiners: there is no need for the answer
to check if the original word is valid

13. Iterative structure that will repeat n − 1 times where n is the length

of the word; A. n − 2 A. n

14. Inside iterative structure adds score for current prefix word, if it is a
valid word, to score once; A. no call to GetScoreForWord if own

code to calculate score is correct

Max 10 if code contains errors

Max 8 if recursion not used in an appropriate way
11

Python 2
def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

Page 21 of 41

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) - 1],

TileDictionary, AllowedWords)

 return Score

Alternative answer

def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

Python 3
def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) - 1],

TileDictionary, AllowedWords)

 return Score

Alternative answer
def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

Visual Basic
Sub UpdateAfterAllowedWord(ByVal Word As String, ByRef

PlayerTiles As String, ByRef PlayerScore As Integer, ByRef

PlayerTilesPlayed As Integer, ByVal TileDictionary As

Dictionary(Of Char, Integer), ByRef AllowedWords As List(Of

String))

 PlayerTilesPlayed += Len(Word)

 For Each Letter In Word

 PlayerTiles = Replace(PlayerTiles, Letter, "", , 1)

 Next

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

End Sub

Page 22 of 41

Function GetScoreForWordAndPrefix(ByVal Word As String, ByVal

TileDictionary As Dictionary(Of Char, Integer), ByRef

AllowedWords As List(Of String)) As Integer

 Dim Score As Integer

 If Len(Word) <= 1 Then

 Return 0

 Else

 Score = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 Score += GetScoreForWordAndPrefix(Mid(Word, 1, Len(Word)

- 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

Alternative answer
Function GetScoreForWordAndPrefix(ByVal Word As String, ByVal

TileDictionary As Dictionary(Of Char, Integer), ByRef

AllowedWords As List(Of String)) As Integer

 Dim Score As Integer = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 If Len(Word) - 1 > 0 Then

 Score += GetScoreForWordAndPrefix(Mid(Word, 1, Len(Word)

- 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

C#
private static void UpdateAfterAllowedWord(string Word, ref

string PlayerTiles, ref int PlayerScore, ref int

PlayerTilesPlayed, Dictionary<char, int> TileDictionary,

List<string> AllowedWords)

{

 PlayerTilesPlayed = PlayerTilesPlayed + Word.Length;

 foreach (var Letter in Word)

 {

 PlayerTiles =

PlayerTiles.Remove(PlayerTiles.IndexOf(Letter), 1);

 }

 PlayerScore = PlayerScore + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

}

private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (Word.Length <= 1)

 {

 return 0;

 }

 else

 {

 Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

Page 23 of 41

 }

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 return Score;

 }

}

Alternative answer
private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

 }

 if (Word.Remove(Word.Length - 1).Length > 0)

 {

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 }

 return Score;

}

Java
int getScoreForWordAndPrefix(String word, Map tileDictionary,

String[] allowedWords)

{

 int score = 0;

 if(word.length() < 2)

 {

 return 0;

 }

 else

 {

 if(checkWordIsValid(word, allowedWords))

 {

 score = getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 return score + getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

 }

}

void updateAfterAllowedWord(String word, Tiles

playerTiles,

 Score playerScore, TileCount playerTilesPlayed, Map

tileDictionary,

 String[] allowedWords)

{

 playerTilesPlayed.numberOfTiles += word.length();

 for(char letter : word.toCharArray())

 {

 playerTiles.playerTiles =

playerTiles.playerTiles.replaceFirst(letter+"", "");

 }

 playerScore.score += getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

}

Page 24 of 41

Alternative answer
int getScoreForWordAndPrefix(String word, Map tileDictionary,

String[] allowedWords)

{

 int score = 0;

 if(checkWordIsValid(word, allowedWords))

 {

 score += getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 if(word.length()>1)

 {

 score += getScoreForWordAndPrefix(word, tileDictionary,

allowedWords);

 }

 return score;

}

Pascal / Delphi
function GetScoreForWordAndPrefix(Word : string;

TileDictionary : TileDictionary; AllowedWords : array of

string) : integer;

 var

 Score : integer;

 begin

 if length(word) <= 1 then

 Score := 0

 else

 begin

 Score := 0;

 if CheckWordIsValid(Word, AllowedWords) then

 Score := Score + GetScoreForWord(Word,

TileDictionary);

 Delete(Word,length(Word),1);

 Score := Score + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

 end;

 GetScoreForWordAndPrefix := Score;

 end;

procedure UpdateAfterAllowedWord(Word : string; var

PlayerTiles : string; var PlayerScore : integer; var

PlayerTilesPlayed : integer; TileDictionary : TileDictionary;

var AllowedWords : array of string);

 var

 Letter : Char;

 begin

 PlayerTilesPlayed := PlayerTilesPlayed + length(Word);

 for Letter in Word do

 Delete(PlayerTiles,pos(letter, PlayerTiles),1);

 PlayerScore := PlayerScore +

GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords);

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (e)(i), including prompts on screen capture
matching those in code.
Code for part (e)(i) must be sensible.

Screen capture(s) showing that the word abandon was entered and the

Page 25 of 41

new score of 78 is displayed;

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR replace the tiles you used

and get three extra tiles (3) OR

 get no new tiles (4)?

>4

Your word was: ABANDON

Your new score is: 78

You have played 7 tiles so far in this game.

Press Enter to continue

1

[37]

Q2.
(a) Mark is for AO1 (knowledge)

Merge sort;
1

(b) Mark is for AO1 (understanding)

4;
1

[2]

Q3.
(a) Mark is for AO1 (understanding)

False;

1

(b) Mark is for AO1 (understanding)

THEN Failed ← True;

1

(c) All marks for AO1 (understanding)
L ← M – 1;

Mark as follows:
1 mark: L;

1 mark: ← M – 1;

Maximum 1 mark: If not correct
2

(d) Mark is for AO1 (understanding)
O(k

n
);

A kn

1

(e) Mark is for AO1 (knowledge)
O(log n);

A log n
1

(f) Mark is for AO1 (knowledge)

Page 26 of 41

O(1);

A 1
1

(g) Mark is for AO1 (knowledge)
O(n);

A n
1

(h) All marks AO1 (understanding)

1 mark: As the size of the list increases the time taken to search for an item
increases; at the same rate; / /
1 mark: A linear search looks at each item in the list in turn (until it reaches
the end of the list or the item being searched for is found); so if there are n
items in the list the worst case would be n comparisons;

2

[10]

Q4.

(a)

1 mark for row 8 correct
1 mark for row 11 correct
1 mark for both rows 10 and 12 correct
Do not award mark for a particular number if same number is written more
than once

3

(b) 8
1

(c) Order of
complexity

Tick one box

O(log2 n)

O(n)

O(n2)

Do not award mark if more than one box ticked
1

[5]

Q5.
(a) A procedure that is defined in terms of itself;

Page 27 of 41

A A procedure that calls itself
R re-entrant

1

(b) Store return addresses;
Store parameters;
Store local variables/ return values;

Max 1

(c)

Number Entry Output

11 1

11 2;

11 3;

11 4; 4;

4

(d) A linear search//
To find/output the position/index of Number in Items;

1

(e) Number is not an entry in Items// Stack overflows;
1

(f) Test for reaching the end of Items;
1

(g) Binary Search;
An iterative solution;

Max 1

[10]

Q6.
(a)

Number Lower Upper Current

12 1 9

 5 5

 3 3

 4 4 4

Value returned 4

1 mark for 1st row (12, 1, 9)
2 marks for second row (1 mark for each 5)
2 marks for 3rd row (3 and 3)

Page 28 of 41

2 marks for 4th row (1 mark for Lower = 4, 1mark for upper = 4)
1 mark for correct return value

8

(b) Find the position of 12/ a number in the array// search for 12/ a number in the
array;

1

[9]

Q7.
(a) (i) 271;

1

(ii) The required item might be the 271st one/last one/ not be present// Every
item accessed;

1

(b) (i) 9;
1

(ii) Each comparison halves the number of items to be accessed//271 lies
between 28 and 29;

1

(c)

Page 29 of 41

1 mark for Count1
1 mark for Count2
1 mark for Temp

5

(ii) (bubble) sort the items into ascending order;
1

(iii) Reduce the number of tests each pass// stop when no swaps occur
during a pass//Add a flag No Swaps to indicate when no swaps occur//
change loop control to Repeat until no swaps// sort variable sized array;

1

[11]

Page 30 of 41

Q8.
(a) (i) • poorly structured code;

• uses GoTo statements;
• the flow of control jumps out of a loop;
• nothing reported to the user when no matching name found;
• abbreviated variable for ‘position’ variable;
• ReadLn is better than Read;
• Program only iterates once / considers only the first array element;
• (if duplicates) only the first matching surname is found;
• (loop terminates at 20) does not allow for additional array /name

entries;
A poor layout - excessive indentation used;
I. variable declaration // reference to the syntax

Max 2

(ii) All statements must have correct identifier name correct data type
(String / Text // Integer / Byte / Word / Int / Shortint / Short as
appropriate)

In addition, either array must have brackets to indicate an ‘array’ 19/20
to indicate a range;

Max 2

(b) Intialisation of counter or Boolean variable
P := 1 / P := 0 / For P := 1 to 20 // IsFound := False;

Looping
LOOP UNTIL // DO WHILE // WHILE DO // REPEAT UNTIL and used at the
beginning/end of a code block as appropriate;

Some loop condition is met
(P = 20/21) OR IsFound = TRUE / P = 20/21 // IsFound = TRUE / IsFound;

IF with use of the array
IF NoOfClaims [P];

Selection condition
>4 / >=5;

Loop counter incremented
P = P+1

Final output
Correct logic followed with OUTPUT ‘Yes’

A multiple times

Final output
Correct logic followed with OUTPUT ‘No’
R Multiple times
R ‘Prose’ scores 0

5

[9]

Q9.

Compare Pascal with middle item of list / Lisp;
Compare Pascal with middle item of upper sublist / Prolog;

Page 31 of 41

Compare Pascal with Pascal // compare only item in this sublist to get a match;

Lose 1 mark if Pascal not explicit in comparison
Stop marking from time it goes wrong

OR
List[4] = Pascal? False;
A [4] = Pascal
R 4 = Pascal
List[6] = Pascal? False;
List[5] = Pascal? True;

If formula explicit, follow through on formula

[3]

Q10.
(a) A procedure/routine which calls itself//is defined in terms of itself;

R re-entrant
A function instead of procedure
R program iteration Talked Out (no mark)

1

(b) (i)

E L H M List[M] Printed
Output

6502 1 11 ; 6 5789 ;

6502 7 11 ; 9 8407 ;

6502 7 8 ; 7 6502 ;

 True;

Accept True in row 3
Marks in each row for all three/two parts correct
Accept empty cell to mean: same as in previous row.
Stop marking when logic goes wrong

7

(ii) Binary search;;
Search;
R any other type of search

2

[10]

Q11.
Compare Newcastle with (middle item of list), Manchester;

Compare Newcastle with (middle item of upper sublist), Sheffield;
Compare Newcastle with Newcastle // compare only item (in lower sublist of this
upper sublist) to get a match;

Lose 1 mark if Newcastle not explicit in comparison stop marking from time it goes
wrong

Page 32 of 41

OR

List[4] = Newcastle? False;
A [4] = Newcastle
R 4 = Newcastle
List[6] = Newcastle? False;
List[5] = Newcastle? True;

If formula explicit, follow through on formula

[3]

Q12.
(a) Root, (1)

Branch (1)
Leaf node(1)
Must circle!

3

(b) Left sub-tree (1)

Right sub-tree(1)

2

(c) W-X / Y+Z
 1 1 1

A column vector
Spurious punctuation (1)

3

[8]

Q13.
(a) (i) 8;

1

(ii) Each time a comparison is made in a binary search the number of items
to be searched / list is halved;

// 137 lies between 27 and 28;

Could give (ii) even if (i) incorrect
1

Page 33 of 41

(b) (i) 137;
1

(ii) In a linear search of 137 items, the required item might be the 137th one;
Need a termination – must explain why 137 is the maximum

1

[4]

Q14.
(a)

A mirror image (this time)
4

(b) ‘T’ 4; ‘U’;

‘T’ 5; ‘S’;

‘T’ 7; ‘T’;

No penalty if candidate gets ‘item’ wrong
Ignore ‘item’ column

6

[10]

Q15.

(a)

1 mark for correct position of London,
1 mark for correct position of Berlin and Paris,
1 mark for Amsterdam and Lisbon correct,

1 mark for Madrid and Rome correct
No follow through in this part of the question
If consistent mirror image give marks
Note (b) and (c) must follow on

4

(b) Root node marked correctly

Page 34 of 41

Tick by question
1

(c) London, Paris Madrid; in correct order
1

[6]

Q16.
(a) 1 mark for each letter correctly placed:

1+1
2

(b) I;T;

1+1
2

[4]

Q17.
(a) Array must be sorted (1), on the field being used as the search key (1)

2

(b) Description must include the following points: Find median record of array (l)
Compare key field of record at median position with required search key, exit if

found (1) If search key lower (i.e. required record in first half), discard second
half, else discard first half (1) Repeat process (1) until either found, or no
further division possible so record does not exist (1)

5

(c) On each iteration, half the possible matches are eliminated, compared with
only one for the linear search (2)
Linear search on average scans n/2 records, compared with log2n which is
smaller “Looks at fewer records” without further explanation (1)

2

[9]

Q18.
(i) File is sorted on appropriate key (1), and direct access to records is possible

Page 35 of 41

(1)
2

(ii) Binary chop - number of comparisons is of the order of log2n instead of n/2
(verbal description OK – e.g. in binary chop, number of records left to examine
is halved each iteration instead of being reduced by one)

2

[4]

Q19.
(a)

Low High Middle Found

 5

6 8

 7 6

7 7 true

1 mark for each entry above (as far as first incorrect entry)

Mark row by row
Max 7

(b) Binary search/chop
Iterative (no synonyms)
(Specific searches not on AS syllabus - search sufficient for mark)

1

[8]

Page 36 of 41

Examiner reports

Q1.
(a) This was the first of the questions that required modifying the Skeleton Program. It

was a simple question that over 80% of students were able to answer correctly.
When mistakes were made this was normally because tiles other than just J and X
were also changed to be worth 4 points.

(b) Like question (a), this question was normally well-answered with almost all student
getting some marks and about 75% obtaining full marks. Where students didn’t get
full marks this was normally due to the conditions on the loop being incorrect which
prevented the values of 1 and / or 20 from being valid.

(c) For this question students had to replace the linear search algorithm used to check if
a word is in the list of allowed words with a binary search algorithm. An example of
how a binary search algorithm works was included on the question paper but if a
similar question is asked in the future that may not be done. A mixture of iterative
and recursive solutions were seen. The most common error made by students who

didn’t get full marks but made a good attempt at answering the question was to miss
out the condition that terminates the loop if it is now known that the word is not in
the list.

(d) Students found question (d) easier than questions (c) and (e). Better answers made
good use of iteration and arrays / lists, less efficient answers which used 26
variables to store the different letter counts could also get full marks. Some students
added code in their new subroutine to read the contents of the text file rather than
pass the list as a parameter to the subroutine; this was not necessary but was not
penalised.

(e) Question (e) asked students to create a recursive subroutine. If students answered
the question without using recursion they could still get 9 out of the 12 marks
available.

It was disappointing that many students did not include any evidence of their attempt
to answer the question. Good exam technique would be to include some program
code that answers some part or parts of the question. For instance, in question (e)
students could get marks for creating a subroutine with the specified name and
calling that subroutine – even if the subroutine didn’t do anything. There are many
examples of subroutines and subroutine calls in the Skeleton Program that students
could have used to help them obtain some marks on this question.

A number of very well-written subroutines were seen that made appropriate use of
recursion and string handling. Some good recursive answers did not get full marks
because they did not include a check that the word / prefix passed as a parameter
was valid before the tile points included in the word were used to modify the score,
this meant that all prefixes would be included in the score and not just the valid

prefixes. Another frequent mistake came when students wrote their own code to
calculate the score for a prefix rather than use the existing subroutine included in the
Skeleton Program that calculated the score for a word – if done correctly full marks
could be obtained by doing this but a number of students made mistakes when
writing their own score-calculating code.

Q2.
This was the Section A question that students found hardest, with very few getting full

Page 37 of 41

marks. Not many students were able to identify the time complexity of either merge sort or
(to a lesser extent) bubble sort and a significant number of students thought that the
binary search and/or the post-order tree traversal would not be used to solve tractable
problems.

When students could state the time complexity of the bubble sort algorithm they were
rarely able to clearly explain why O(n2) was the correct answer.

Q4.
Part (a): The binary search method was well understood and the majority of candidates

were able to correctly label the sequence of four items that would be checked to search
for the name “Richard”. Some candidates missed out on the final mark by not realising
that there would be a fourth comparison, i.e. “Richard” compared with “Richard”. A
minority of candidates applied the linear search method instead, labelling each of the
names from Adam down to Richard consecutively from 1 to 11.

Part (b): This part was not tackled as well as part (a). Most candidates seemed to realise
that the answer involved logarithms or powers of two, but the most common response was
seven rather than eight, the correct answer. When calculating the number of comparisons
required to search a list of n items, log2 (n) should be calculated and the result then
rounded up. So log2(137)=7.10 to 2 decimal places, which rounds up to 8.

Part (c): This question part was well answered, with over half of the candidates correctly
identifying the complexity of the binary search method as O(log 2 n).

Q5.
Candidates generally scored well on this question. Recursively-defined was well
understood although many candidates were unable to describe the use of the stack well
enough. It was pleasing to see the majority of candidates obtaining most of the marks on
part (c). Candidates often failed to obtain the mark for part (d) due to inadequate
descriptions. Although many candidates provided a situation where the algorithm will fail,
fewer were able to suggest a suitable modification. Once again this was often due to an
inability to express themselves well. A wide range of answers were supplied for part (g)
but a substantial number of correct responses were given.

Q6.
Very few candidates did not get some marks for the trace and many returned full marks
for this part of the question. Some candidates who did achieve full marks on part (a) could

not say what the algorithm does. Many candidates seemed to make a wild guess.

Q7.
It was pleasing to see many good answers to parts (a) and (b) although a number of
candidates failed to obtain full marks through inadequate explanations. Part (c) was
disappointing with few candidates completing the trace table correctly. Nevertheless it was
pleasing to see a greater number of candidates able to partially complete a dry run. A
surprising number of candidates were able to state that this was a bubble sort even
though they failed to complete the trace table. Fewer were able to give a suitable
improvement. The most common incorrect suggestion was to “make the algorithm
recursive”.

Q8.

Page 38 of 41

(a) (i) The use of GoTo statements has not previously been examined on this paper
and most candidates struggled to suggest a single reason why this was poorly
designed code, despite a large number of acceptable answers. The most
common correct answers were that the use of GoTo statements gives rise to
code which is difficult to follow and trace; there is no output produced when
the SearchName value is not found; when there is more than one occurrence
of SearchName in the PolicyHolder array, the program will output the number
of claims value for the first occurrence of the name only.

(ii) Few marks were obtained here with most candidates failing to give the bounds

of the array for PolicyHolder or NoOfClaims, or omitting a data type for the
identifier.

(b) Candidates should be able to write small amounts of program code in a unit that
has the word ‘programming’ in its title. Knowledge of loops other than a For loop
was rare. It was hoped that candidates would have constructed a Repeat – Until or
While loop which terminated when a NoOfClaims value of 5 or more was found.
Candidates who used a For loop were, however, still able to score the maximum 5
marks.

Examiners were not looking for the correct use of exact syntax for the language as
stated by the candidate.

The use of IF statements was better understood, but this often did not extend to
using an array index for the NoOfClaims as part of the IF statement. Very many

candidates used the maths operator incorrectly, e.g. or more usually =>. Quite a
few candidates reversed the logic testing for <5 and gave appropriate output for
which they gained marks. Most popular languages seen were Pascal and Visual
Basic but the candidates that used C on the whole answered the question very well
indeed.

Q9.
Many candidates scored full marks on this question, but a significant minority do not

appear to know how a binary search algorithm operates and could not write down the
actual comparisons needed: Pascal is first compared with the middle item, Lisp. Then
Pascal is compared with the middle item of the second sub-list, Prolog. Many candidates
failed to state that a third comparison has to be made, i.e. comparing Pascal with Pascal
before it can be stated that Pascal has been found.

Q10.
(a) Most candidates could correctly state that recursively defined means that a

procedure is defined in terms of itself or that it calls itself. Some candidates failed to
gain marks because they could not express this clearly enough. A common
misconception was that the procedure was in a loop.

(b) Many candidates managed to gain full marks for completing the trace table:

E L H M List[M] Printed
Output

6502 1 11 ; 6 5789 ;

6502 7 11 ; 9 8407 ;

Page 39 of 41

6502 7 8 ; 7 6502 ;

 True;

A common mistake was to have False as printed output in the first 2 rows until it
changed to True.

Some candidates who correctly completed the trace table could not see that the

process was a binary search and some who did not complete the table correctly did
manage to identify the process correctly.

Candidates should be aware of the need to fill in trace tables carefully, showing how
values change chronologically. This may mean leaving some cells empty if no
values are assigned to variables initially.

Q11.
Many candidates scored full marks on this question, some lost marks for not explicitly
stating that each middle value had to be compared with the value searched for. Especially
at the last step, when Newcastle is the only element left in the list, a comparison still has
to be done to check that it is the required value.

Q12.

This was well answered by many candidates, although here again, marks were lost
through lack of care in carrying out the clearly written instructions. The instructions in part
(a) were to circle and label the three parts of the tree. An un-circled, or (more rarely)
unlabelled part was not credited. Very few candidates were unable to draw the left and
right sub-trees correctly, and most could perform in-order traversal.

Q13.
This question involved comparing the number of items which would be accessed when
searching a list of 137 items using a binary search as opposed to a linear search. For the
binary search, answers varied from 1 (the search goes directly to required item) to 256 or
28, although the reason for this was not made clear. 68 or 69 were common errors. The
correct answer was 8. For the reason, candidates frequently had the idea of discarding
the unwanted half, but the concept of this being repeated in each repetition was required

for credit. A correct reason was credited even if the candidate had miscalculated and
given an answer of 7 or, occasionally, 9.

For the linear search, the answers were more often correct, although 138 or 136 were
sometimes given. A good reason here was ‘Although most searches will take less, if the
required item is the last in the list then all items will be accessed before it is reached’. Too
many candidates missed this mark by stating that every item needed to be looked at;
some even stating that the list would be un-sorted. A linear search is performed on a
sorted list. Reference to looking at every file resulted in the answer being talked out.

Q14.
(a) The tree was generally well created. A few candidates produced mirror images,

which were accepted this time. However, candidates need to be aware that a binary

search tree stores lower values in the left sub-tree and higher values in the right
sub-tree. A few candidates produced a balanced binary tree with each node having
two sub nodes, which was not correct.

Page 40 of 41

(b) Only the better candidates seemed to score full marks here. Dry-running an
algorithm does not seem to have received sufficient attention in the preparation of a
number of candidates. The fact that ‘Item’ did not change its value seemed to be
noticed by only a few candidates. Candidates did not appear to appreciate that the
algorithm was using the binary search tree, which the candidates had drawn in part
(a).

Q15.
This was usually answered correctly, with a few candidates getting some of the nodes

wrong. Some candidates did not answer part (c) correctly by knowing about traversal of
binary trees (which is not in the specification of CPTI) and then applying this rather than
the straightforward binary search. Many candidates did not mention the final node in their
list of data items accessed. This was accepted this time, but will not gain credit in future
years. Clearly, the final node has to be accessed to see that the search has been
successful.

Q16.
This was usually answered correctly.

Q17.
Knowledge of sort procedures seems good, but the ability to express it with anything like
the precision of language expected at A-level is not. In particular, far too many candidates

treat file, record and field as interchangeable terms, which is unacceptable at this level.

For part (a), nearly all candidates pointed out that an array needed to be sorted for a
binary chop search to work, but very few realised that, say, an array with ten fields could
be sorted in ten different orders and only one would work - that in which the sort key was
the field being searched.

For part (b), most scored reasonably well, although as usual descriptions were full of
waffle. Candidates seemed to be trying to paraphrase an algorithm they had been taught -
while formal algorithms are not in the syllabus for this paper, if a candidate wants to
present an answer in pseudocode or even flowchart form it will receive full credit. A
common mistake was to say that the search key was compared to “the middle record”
(rarely the more accurate “key field of the median record”) and one half or the other
discarded, ignoring the possibility that it might be matched enabling the search to end.
Many candidates failed to indicate how the search could indicate failure if the desired key

did not exist in the array. Another mistake is to describe the process by describing the
progress of a search of specimen data - rarely adequate because it misses many of the
things that can happen with different data, and does not bring out the iterative nature of
the process because the list is so short.

In part (c), it was necessary to indicate something about the workings of both techniques
to gain both marks (preferably referring back to part (b)) - the bald (and common) “it looks
at fewer records” shows little understanding. Not many appreciated the significance of the
word “normally” - a linear search is actually much faster than a binary chop in finding a
key such as “aardvark”!

Q18.
Most candidates knew that a binary search only works on a sorted file, but hardly any also

realised that direct access to records is also essential. The last part also showed
weaknesses in exam technique: candidates did not read carefully what the question was

Page 41 of 41

asking for. A very large number laboured mightily for half a page or more describing the
binary chop in detail: this was unnecessary, the question merely wanted an explanation of
why it is faster than a linear search. “The binary chop eliminates at least half the possible
records in each iteration, whereas a linear search can only eliminate at most one” would
have scored both marks.

Q19.
Those candidates who read this question carefully gained full marks, and most of those
were then able to identify the routine as a binary search routine. Candidates were given

credit for simply saying “a search routine” as particular types of search routine are not
specified on the AS syllabus. Although the function Int was explained, many candidates

gave the first middle value as 5.5 or rounded up to 6. A very common error was to confuse
the subscripts with the actual data. Surprisingly, many calculated the first three values
correctly, and then made an error on the fourth.

