EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.4 Further Trigonometry

IB Maths - Revision Notes

3.4.1 The Unit Circle

Defining Sin, Cos and Tan

What is the unit circle?

- The unit circle is a circle with radius land centre $(0,0)$
- Angles are always measured from the positive x-axis and turn:
- anticlockwise forpositive angles
- clockwise for negative angles
- It can be used to calculate trig values as a coordinate point (x, y) on the circle
- Trig values can be found by making a right triangle with the radius as the hypotenuse
- Where θ is the angle measured anticlockwise from the positive x-axis
- The x-axis will always be adjacent to the angle, θ
- SOHCAHTOA can be used to find the values of $\sin \theta, \cos \theta$ and $\tan \theta$ easily
- As the radius is lunit
- the $\boldsymbol{x} \operatorname{coordinate}$ gives the value of $\cos \theta$
- the y coordinate gives the value of $\sin \boldsymbol{\theta}$
- As the origin is one of the end points - dividing the ycoordinate by the x coord inate gives the gradient
- the gradient of the line gives the value of $\tan \theta$
- It allows us to calculate sin, cos and tan for angles greater than $90^{\circ}\left(\frac{\pi}{2} \mathrm{rad}\right)$

Page 1 of 10
For more help visit our website www.exampaperspractice.co.uk

Exam Papers Practice

Worked example

The coord inates of a point on a unit circle, to 3 signific ant figures, are ($0.629,0.777$). Find θ° to the nearest degree.

ExamPapers Practice
Copyright
© 2024 Exam Papers Practice

Using The Unit Circle

What are the properties of the unit circle?

- The unit circle can be split into four quadrants at every $90^{\circ}\left(\frac{\pi}{2} \mathrm{rad}\right)$
- The first quadrant is for angles between 0 and 90°
- All three of $\operatorname{Sin} \theta, \operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$ are positive in this quadrant
- The second quadrant is for angles between 90° and $180^{\circ}\left(\frac{\pi}{2}\right.$ rad and π rad $)$
- $\operatorname{Sin} \theta$ is positive in this quadrant
- The third quadrant is for angles between 180° and $270^{\circ}\left(\pi\right.$ rad and $\frac{3 \pi}{2}$)
- Tan θ is positive in this quadrant
- The fourth quadrant is for angles between 270° and $360^{\circ}\left(\frac{3 \pi}{2}\right.$ rad and 2π)
- $\operatorname{Cos} \theta$ is positive in this quadrant
- Starting from the fourth quadrant (on the bottom right) and working anti-clockwise the positive trig functions spell out CAST
- This is why it is often thought of as the CAST diagram
- You mayhave your own way of remembering this
- A popular one starting from the first quadrant is All Students Take Calculus
- To help picture this better trysketching all three trig graphs on one set of axes and look at which graphs are positive in each 90° section

How is the unit circle used to find secondarysolutions?

- Trigonometric functions have more than one input to each output
- For example $\sin 30^{\circ}=\sin 150^{\circ}=0.5$
- This means that trigo no metric equations have more than one solution
- For example both 30° and 150° satisfy the equation $\sin x=0.5$
- The unit circle can be used to find all solutions to trigo nometric equations in a given interval
- Your calculator will only give you the first solution to a problem such as $x=\sin ^{-1}(0.5)$
- This solution is called the primary value
- However, due to the perio dic nature of the trig functions there could be an infinite number of solutions
- Further solutions are called the secondary values
- This is why you will be given a do main in which your solutions should be found
- This could eitherbe in degrees or in radians
- If you see π or some multiple of π then you must work in radians
- The following steps mayhelp you use the unit circle to find secondary values

STEP 1: Draw the angle into the first quadrant using the xorycoordinate to help you

Page 3 of 10

- If you are working with $\sin x=k$, draw the line from the origin to the circumference of the circle at the point where the \mathbf{y} coordinate is k
- If you are working with $\cos x=k$, draw the line from the origin to the circumference of the circle at the point where the \mathbf{x} coordinate is k
- If you are working with $\tan x=k$, draw the line from the origin to the circumference of the circle such that the gradient of the line is k
- This will give you the angle which should be measured from the positive \mathbf{x}-axis ...
- ... anticlockwise for a positive angle
- ... clockwise for a negative angle

STEP 2: Draw the radius in the other quadrant which has the same...

- ... x-coordinate if solving $\cos x=k$
- This will be the quad rant which is vertical to the original quadrant
- ... y-coordinate if solving $\sin x=\mathrm{k}$
- This will be the quadrant which is horizontal to the original quadrant
- ... gradient if solving $\tan x=k$
- This will be the quadrant diagonal to the original quadrant

STEP 3: Work out the size of the second angle, measuring from the positive x-axis

- ... anticlockwise for a positive angle
- ...clockwise for a negative angle
- You should look at the given range of values to decide whether you need the negative or positive angle
STEP 4: Add or subtract either 360° or 2π radians to both values untilyou have all solutions in the required range
© 2024 Exam Papers Practice

O Exam Tip

- Being able to sketch out the unit circle and remembering CAST can help youto find all solutions to a problemin an exam question

Worked example

Given that one solution of $\cos \theta=0.8$ is $\theta=0.6435$ radians correct to 4 decimal places, find all other solutions in the range $-2 \pi \leq \theta \leq 2 \pi$. Give your answers correct to 3 significant figures.

Therefore all values are: $0.6435 \pm 2 \pi n$
and $-0.6435 \pm 2 \pi$
given domain: $-2 \pi \leqslant \theta \leqslant 2 \pi$

$$
\theta=-5.64^{c},-0.644^{c}, 0.644^{c}, 5.64^{c}
$$

3.4.2 Exact Values

Trigonometry Exact Values

What are exact values in trigonometry?

- For certain angles the values of $\sin \theta, \cos \theta$ and $\tan \theta c$ an be written exactly
- This means using fractions and surds
- You should be familiar with these values and be able to derive the values using geometry
- You are expected to know the exact values of \sin , \cos and tan for angles of $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$, 180° and their multiples
- In radians this is $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi$ and their multiples
- The exact values you are expected to know are here:

DEGREES	0°	30°	45°	60°	90°	180°	360°
RADIANS	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	0
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	1
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	UNDEFINED	0	0

© 2024 Exam Papers Practice

Howdolfind the exact values of other angles?

- The exact values for sin and cos can be seen on the unit circle as the yand xcoordinates respectively
- If using the coordinates on the unit circle to memorise the exact values, remember that cos comesbefore sin
- The unit circle can also be used to find exact values of other angles using symmetry
- If youknow the exact value for an angle in the first quadrant youcan draw the same angle from the x-axis in any other quadrant to find other angles
- Remember that the angles are measured anticlockwise from the positive x-axis
- For example if youknow that the exact value foris 0.5
- draw the angle 30° from the horizontal in the three other quadrants
- measuring from the positive x-axis you have the angles of $150^{\circ}, 210^{\circ}$ and 330°
- \sin is positive in the second quadrant so $\sin 150^{\circ}=0.5$
- \sin is negative in the third quadrant so $\sin 210^{\circ}=-0.5$
- \sin is negative in the fourth quadrant so $\sin 330^{\circ}=-0.5$
- It is also possible to find the negative angles bymeasuring clockwise from the positive x-axis
- draw the angle 30° from the ho rizontal in the three other quadrants
- measuring clockwise from the positive x-axis you have the angles of $-30^{\circ},-150^{\circ},-210^{\circ}$ and -330°
- \sin is negative in the fourth quadrant so $\sin \left(-30^{\circ}\right)=-0.5$
- \sin is negative in the third quadrant so $\sin \left(-150^{\circ}\right)=-0.5$
- \sin is positive in the second quadrant so $\sin \left(-210^{\circ}\right)=0.5$
- \sin is positive in the fourth quad rant so $\sin \left(-330^{\circ}\right)=0.5$

How are exact values in trigonometry derived?

- There are two special right -triangles that can be used to derive all of the exact values you need to know
- Consid er a right-triangle with a hypo tenuse of 2 units and a shorter side length of 1 unit
- Using Pythagoras' theo rem the third side will be $\sqrt{3}$
- The angles will be $\frac{\pi}{2}$ radians $\left(90^{\circ}\right), \frac{\pi}{3}$ radians $\left(60^{\circ}\right)$ and $\frac{\pi}{6}$ radians $\left(30^{\circ}\right)$
- Using SOHCAHTOA gives ...
- $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \quad \sin \frac{\pi}{6}=\frac{1}{2}$
- $\cos \frac{\pi}{3}=\frac{1}{2} \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
- $\operatorname{Tan} \frac{\pi}{3}=\sqrt{3} \quad \operatorname{Tan} \frac{\pi}{6}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
- Consider an isosceles triangle with two equal side lengths (the opposite and adjacent) of 1 unit
- Using Pythagoras' theorem it will have a hypotenuse of $\sqrt{2}$
- The two equal angles will be $\frac{\pi}{4}$ radians $\left(45^{\circ}\right)$
- Using SOHCAHTOA gives ...
- $\operatorname{Sin} \frac{\pi}{4}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
- $\operatorname{Cos} \frac{\pi}{4}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
- $\operatorname{Tan} \frac{\pi}{4}=1$

OヨSITVNOI $\forall V$ YO $\perp \forall N I W O N \exists O: Y \exists M S N \forall$

- Exam Tip

- You will be expected to be comfortable using exact trig values forcertain angles but it can be easy to muddle them up if you just try to remember them from a list, sketch the triangles and trig graphs on your paper so that you can use them as manytimes as you need to during the exam!
- sketch the triangles for the key angles $45^{\circ} \% \frac{\pi}{4}, 30^{\circ} / \frac{\pi}{6}, 60^{\circ} / \frac{\pi}{3}$
- sketch the trig graphs for the key angles $0^{\circ}, 90^{\circ} / \frac{\pi}{2}, 180^{\circ} / \pi, 270^{\circ} / \frac{3 \pi}{2}, 360^{\circ} / 2 \pi$

Exam Papers Practice

Worked example

Using an equilateral triangle of side length 2 units, derive the exact values for the sine, cosine and tangent of $\frac{\pi}{6}$ and $\frac{\pi}{3}$.

$$
a^{2}=\sqrt{2^{2}-1^{2}}
$$

$$
=\sqrt{3}
$$

Using

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} & \sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \\
\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} & \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\
\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}} & \tan \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{1}=\sqrt{3}
\end{array}
$$

Copyright
© 2024 Exam Papers Practice

