铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.4 Further Trigonometry

Exam Papers Practice

3.4.1 The Unit Circle

Defining Sin, Cos and Tan

What is the unit circle?

- The unit circle is a circle with radius 1 and centre $(0,0)$
- Angles are always measured from the positive x-axis and turn:
- anticlockwise forpositive angles
- clockwise fornegative angles
- It can be used to calculate trig values as a coordinate point (x, y) on the circle
- Trig values can be found by making a right triangle with the radius as the hypo tenuse
- θ is the angle measured anticlockwise from the positive x-axis
- The x-axis will always be adjacent to the angle, θ
- SOHCAHTOA can be used to find the value of $\sin \theta, \cos \theta$ and $\tan \theta$ easily
- As the radius is 1 unit
- the $\boldsymbol{x c o o r d i n a t e ~ g i v e s ~ t h e ~ v a l u e ~ o f ~} \cos \boldsymbol{\theta}$
- the y coordinate gives the value of $\sin \theta$
- As the origin is one of the end points - dividing the ycoordinate by the xcoordinate gives the gradient
- the gradient of the line gives the value of $\tan \theta$
- It allows us to calculate \sin , \cos and tan for angles greater than $90^{\circ}\left(\frac{\pi}{2}\right.$ rad $)$

How is the unit circle used to construct the graphs of sine and cosine?

Page 1 of 15

- On the unit circle the \boldsymbol{y}-coordinates give the value of sine
- Plot the y-coordinate from the unit circle as the y-coordinate on a trig graph for x coordinates of $\theta=0, \pi / 2, \pi, 3 \pi / 2$ and 2π
- Join these points up using a smooth curve
- To get a cleareridea of the shape of the curve the points for x-coordinates of $\theta=\pi / 4$, $3 \pi / 4,5 \pi / 4$ and $7 \pi / 4$ could als o be plotted

- On the unit circle the \boldsymbol{x}-coordinates give the value of cosine
- Plot the x-coordinate from the unit circle as the y-coordinate on a trig graph for x coordinates of $\theta=0, \pi / 4, \pi / 2,3 \pi / 4$ and 2π
- Join these points up using a smooth curve
- To get a cleareridea of the shape of the curve the points for x-coordinates of $\theta=\pi / 4$, $3 \pi / 4,5 \pi / 4$ and $7 \pi / 4$ could als o be plotted

- Looking at the unit circle alongside of the sine or cosine graph will help to visualise this clearer

Exam Papers Practice

Worked example

The coordinates of a point on a unit circle, to 3 significant figures, are ($0.629,0.777$). Find θ° to the nearest degree.

ExamPapers Practice
Copyright
© 2024 Exam Papers Practice

Using The Unit Circle

What are the properties of the unit circle?

- The unit circle can be split into four quadrants at every $90^{\circ}\left(\frac{\pi}{2}\right.$ rad $)$
- The first quadrant is for angles between 0 and 90°
- All three of $\operatorname{Sin} \theta, \operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$ are positive in this quadrant
- The second quadrant is for angles between 90° and $180^{\circ}\left(\frac{\pi}{2}\right.$ rad and π rad $)$
- $\operatorname{Sin} \theta$ is positive in this quadrant
- The third quad rant is for angles between 180° and $270^{\circ}\left(\pi\right.$ rad and $\left.\frac{3 \pi}{2}\right)$
- Tan θ is positive in this quadrant
- The fourth quadrant is for angles between 270° and $360^{\circ}\left(\frac{3 \pi}{2}\right.$ rad and $\left.2 \pi\right)$
- $\operatorname{Cos} \theta$ is positive in this quadrant
- Starting from the fourth quadrant (on the bottom right) and working anti-clockwise the positive trig functions spell out CAST
- This is why it is often thought of as the CAST diagram
- You may have your own way of remembering this
- A po pular one starting from the first quadrant is All Students Take Calculus
- To help picture this better try sketching all three trig graphs on one set of axes and lo ok at which graphs are positive in each 90° section

How is the unit circle used to find secondarysolutions?

- Trigo nometric functions have more than one input to each output
- For example $\sin 30^{\circ}=\sin 150^{\circ}=0.5$
- EThis means that trigo nometric equations have more than one solution
- Forexample both 30° and 150° satisfy the equation $\sin x=0.5$
- The unit circle can be used to find all solutions to trigo nometric equations in a given interval
- Your calculator will only give you the first solution to a problem such as $x=\sin ^{-1}(0.5)$
- This solution is called the primary value
- However, due to the perio dic nature of the trig functions there could be an infinite number of solutions
- Further solutions are called the secondary values
- This is why you will be given a domain in which your solutions should be found
- This could either be in degrees orin radians
- If you see π or some multiple of π then you must work in radians
- The following steps may help you use the unit circle to find secondary values

STEP 1: Draw the angle into the first quadrant using the xorycoordinate to help you

Page 4 of 15

- If you are working with $\sin x=k$, draw the line from the origin to the circumference of the circle at the point where the y coordinate is k
- If you are working with $\cos x=k$, draw the line from the origin to the circumference of the circle at the point where the \mathbf{x} coordinate is k
- If you are working with $\tan x=k$, draw the line from the origin to the circumference of the circle such that the gradient of the line is k
- Note that whilst this method works for tan, it is complicated and generallyunnecessary, $\tan x$ repeats every 180° (π radians) so the quickest method is just to add orsubtract multiples of 180° to the primaryvalue
- This will give you the angle which should be meas ured from the positive x-axis ...
- ... anticlockwise for a positive angle
- ...clockwise for a negative angle

STEP 2: Draw the radius in the otherquadrant which has the same...

- ... x-coord inate if solving $\cos x=k$
- This will be the quadrant which is vertical to the original quadrant
- ... y-coordinate if solving $\sin x=k$
- This will be the quad rant which is horizontal to the original quadrant
- ... gradient if solving $\tan x=k$
- This will be the quadrant diago nallyacross from the original quadrant

STEP 3: Work out the size of the second angle, measuring from the positive x-axis

- ... anticlockwise for a positive angle
- ...clockwise for a negative angle
- You should look at the given range of values to decide whether you need the negative or positive angle
STEP 4: Add or subtract either 360° or 2π radians to both values untilyou have all solutions in the required range

Copyright
© 2024 Exam Papers Practice

O Exam Tip

- Being able to sketch out the unit circle and remembering CAST can help you to find all solutions to a problem in an exam question

Worked example

Given that one solution of $\cos \theta=0.8$ is $\theta=0.6435$ radians correct to 4 decimal places, find all other solutions in the range $-2 \pi \leq \theta \leq 2 \pi$. Give your answers correct to 3 significant figures.

Therefore all values are: $0.6435 \pm 2 \pi n$

Within given domain: $-2 \pi \leqslant \theta \leqslant 2 \pi$

© 2024 Exam Papers Practice

$$
\theta=-5.64^{c},-0.644^{c}, 0.644^{c}, 5.64^{c}
$$

3.4.2 Simple Identities

Simple Identities

What is a trigonometric identity?

- Trigo nometric identities are statements that are true for all values of \boldsymbol{X} or $\boldsymbol{\theta}$
- They are used to help simplify trigo nometric equations before solving them
- Sometimes you maysee id entities written with the symbolミ
- This means 'identical to'

What trigonometric identities do Ineed to know?

- The two trigonometric identities you must know are
- $\tan \theta=\frac{\sin \theta}{\cos \theta}$
- This is the identityfor $\tan \theta$
- $\sin ^{2} \theta+\cos ^{2} \theta=1$
- This is the Pythagorean identity
- Note that the notation $\sin ^{2} \theta$ is the same as $(\sin \theta)^{2}$
- Both identities can be found in the formula booklet
- Rearranging the second identity often makes it easier to work with
- $\sin ^{2} \theta=1-\cos ^{2} \theta$
- $\cos ^{2} \theta=1-\sin ^{2} \theta$

Where do the trigonometric identities come from?

- You do not need to know the proof for these identities but it is a good idea to know where they come from
- From SOHCAHTOA we know that
- $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{O}{H}$
- $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{A}{H}$
- $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{O}{A}$
- The identityfor $\tan \theta$ can be seen by diving $\sin \theta$ by $\cos \theta$?
- $\frac{\sin \theta}{\cos \theta}=\frac{\frac{O}{H}}{\frac{A}{H}}=\frac{O}{A}=\tan \theta$
- This can also be seen from the unit circle by considering a right-triangle with a hypotenuse of 1
- $\tan \theta=\frac{O}{A}=\frac{\sin \theta}{\cos \theta}$
- The Pythagorean identity can be seen by consid ering a right-triangle on the unit circle with a hypotenuse of 1
- Then (opposite) $)^{2}+(\text { adjacent })^{2}=1$
- Therefore $\sin ^{2} \theta+\cos ^{2} \theta=1$
- Considering the equation of the unit circle also shows the Pythago rean identity
- The equatio n of the unit circle is $x^{2}+y^{2}=1$
- The coordinates on the unit circle are $(\cos \theta, \sin \theta)$
- Therefore the equation of the unit circle could be written $\cos ^{2} \theta+\sin ^{2} \theta=1$
- A third veryuseful identity is $\sin \theta=\cos \left(90^{\circ}-\theta\right)$ or $\sin \theta=\cos \left(\frac{\pi}{2}-\theta\right)$
- This is not included in the formula booklet but is useful to remember

How are the trigonometric identities used?

- Most commonly trigo nometric identities are used to change an equation into a form that allows it to be solved
- They can also be used to prove furtheridentities such as the double angle formulae

- Exam Tip

- If you are asked to show that one thing is id entical (三) to another, look at what parts are © 2024 Exmissing-forexample, if tan x has gone it must have been substituted

Worked example

Show that the equation $2 \sin ^{2} x-\cos x=0$ can be written in the form $a \cos ^{2} x+b \cos x+c=0$, where a, b and c are integers to be found.

Copyright
© 2024 Exam Papers Practice

3.4.3 Solving Trigonometric Equations

Graphs of Trigonometric Functions

What are the graphs of trigonometric functions?

- The trigonometric functions \sin , \cos and tan all have special periodic graphs
- You'll need to know their properties and how to sketch them for a given domain in either degrees orradians
- Sketching the trigonometric graphs can help to
- Solve trigo no metric equations and find all solutions
- Understand transformations of trigonometric functions

What are the properties of the graphs of $\sin x$ and $\cos x$?

- The graphs of $\sin x$ and $\cos x$ are both perio dic
- Theyrepeat every 360° (2π radians)
- The angle will always be on the x-axis
- Eitherin degrees orradians
- The graphs of $\sin x$ and $\cos x$ are always in the range $-1 \leq y \leq 1$
- Domain: $\{\boldsymbol{X} \mid \boldsymbol{X} \in \mathbb{R}\}$
- Range: $\{\boldsymbol{y} \mid-1 \leq \boldsymbol{y} \leq 1\}$
- The graphs of $\sin x$ and $\cos x$ are identical however one is a translation of the other
- sinxpasses through the origin
- cosxpasses through $(0,1)$
- The amplitude of the graphs of $\sin x$ and $\cos x$ is 1

What are the properties of the graph of $\tan x$?

- The graph of tanx is perio dic
- It repeats every 180° (π radians)
- The angle will always be on the x-axis
- Eitherin degrees orradians
- The graph of $\tan x$ is und efined at the points $\pm 90^{\circ}, \pm 270^{\circ}$ etc
- There are asymptotes at these points on the graph
- In radians this is at the points $\pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$ etc
- The range of the graph of $\tan x$ is
- Domain: $\left\{\boldsymbol{x} \left\lvert\, \boldsymbol{x} \neq \frac{\boldsymbol{\pi}}{2}+\boldsymbol{k} \boldsymbol{\pi}\right., \boldsymbol{k} \in \mathbb{Z}\right\}$
- Range: $\{\boldsymbol{y} \mid \boldsymbol{y} \in \mathbb{R}\}$

Exam Papers Practice

$$
y=\sin x \quad \text { AND } y=\cos x
$$

```
Sin}x AND Cos x ARE ALWAYS Sin x PASSES THROUGH THE ORIGIN
IN THE RANGE -1 TO 1 Cosx PASSES THROUGH 1
```



```
Sinx AND Cosx
ARE PERIODIC
REPEATING EVERY 360
```

```
Sinx HAS ROTATIONAL SYMMETRY ABOUT
THE ORIGIN SO }\operatorname{sin}(-x)=-\operatorname{sin}(x
Cosx IS SYMMETRICAL THROUGH THE y-AXIS
SO }\operatorname{cos}(-x)=\operatorname{cos}(x
```



```
Tanx IS PERIODIC
REPEATING EVERY 180
```


How do Isketch trigonometric graphs?

- You mayneed to sketch a trigonometric graph so you will need to remember the keyfeatures of eachone
- The following steps may help you sketch a trigo nometric graph
- STEP 1: Check whether you should be working in degrees or radians
- Youshould check the domain given for this
- If yousee π in the given do main then you should work in radians
- STEP 2: Label the x-axis in multiple of 90°

Page 12 of 15
For more help visit our website www.exampaperspractice.co.uk

- This will be multiples of $\frac{\pi}{2}$ if you are working in radians
- Make sure you cover the whole do main on the x-axis
- STEP 3: Label the y-axis
- The range for the y-axis will be $-1 \leq y \leq 1$ for sin orcos
- Fortan you will not need anyspecific points on the y-axis
- STEP 4: Draw the graph
- Knowing exact values will help with this, such as remembering that $\sin (0)=0$ and $\cos (0)=1$
- Mark the important points on the axis first
- If you are drawing the graph of $\tan x$ put the asymptotes in first
- If you are drawing inxorcos x mark in where the maximum and minimum points will be
- Tryto keep the symmetry and rotational symmetry as you sketch, as this will help when using the graph to find solutions

- Exam Tip

- Sketch all three trig graphs on your exam paper so you can refer to them as manytimes as you need to!

Worked example

Sketch the graphs of $y=\cos \theta$ and $y=\tan \theta$ on the same set of axes in the interval $-\pi \leq \theta \leq 2 \pi$. Clearly mark the keyfeatures of both graphs.

Using Trigonometric Graphs

How can I use a trigonometric graph to find extra solutions?

- Your calculator will only give you the first solution to a problem such as $\sin ^{-1}(0.5)$
- This solution is called the primary value
- However, due to the periodic nature of the trig functions there could be an infinite number of solutions
- Further solutions are called the secondary values
- This is whyyou will be given a domain (interval) in which your solutions should be found
- This could either be in degrees orin radians
- If you see π or some multiple of π then you must work in radians
- The following steps will help you use the trigonometric graphs to find secondary values
- STEP 1: Sketch the graph for the given function and interval
- Check whether you should be working in degrees or radians and label the axes with the keyvalues
- STEP 2: Draw a horizontal line go ing through the y-axis at the point you are trying to find the values for
- For example if you are looking for the solutions to $\sin ^{-1}(-0.5)$ then draw the ho rizo ontal line going through the y-axis at -0.5
- The number of times this line cuts the graph is the number of solutions within the given interval
- STEP 3: Find the primary value and mark it on the graph
- This will either be an exact value and you should know it
- Oryou will be able to use your calculator to find it
- STEP 4: Use the symmetry of the graph to find all the solutions in the interval by adding or subtracting from the keyvalues on the graph

What patterns can be seen from the graphs of trigonometric functions?

20The graph of $\sin x$ has rotational symmetry about the origin

- So $\sin (-x)=-\sin (x)$
- $\sin (x)=\sin \left(180^{\circ}-x\right)$ or $\sin (\pi-x)$
- The graph of $\cos x$ has reflectional symmetry about the y-axis
- So $\cos (-x)=\cos (x)$
- $\cos (x)=\cos \left(360^{\circ}-x\right) \operatorname{orcos}(2 \pi-x)$
- The graph of tan x repeats every 180° (π radians)
- So $\tan (x)=\tan \left(x \pm 180^{\circ}\right)$ ortan $(x \pm \pi)$
- The graphs of $\sin x$ and $\cos x$ repeat every $360^{\circ}(2 \pi$ radians $)$
- So $\sin (x)=\sin \left(x \pm 360^{\circ}\right)$ orsin $(x \pm 2 \pi)$
- $\cos (x)=\cos \left(x \pm 360^{\circ}\right) \operatorname{orcos}(x \pm 2 \pi)$

- Exam Tip

- Take care to always check what the int erval for the angle is that the question is focused on

Worked example

One solution to $\cos x=0.5$ is 60°. Find all the other solutions in the range $-360^{\circ} \leq x \leq 360^{\circ}$.

Solutions are: $60^{\circ}, 360^{\circ}-60^{\circ},-60^{\circ},-360^{\circ}+60^{\circ}$

$$
-60^{\circ},-300^{\circ}, 60^{\circ}, 300^{\circ}
$$

Copyright
© 2024 Exam Papers Practice

