Diffraction TOPIC QUESTIONS

Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

1. A narrow beam of monochromatic light falls on a diffraction grating at normal incidence. The second order diffracted beam makes an angle of 45° with the grating. What is the highest ordervisible with this grating at this wavelength?

A 2

B 3
C 4

D 5

EXAM PAPERS PRACTICE

2.

Coherent monochromatic light of wavelength λ emerges from the slits X and Y to form dark fringes at P, Q, R and S in a double slit apparatus. Which one of the following statements is true?

A When the distance D is increased, the separation of the fringes increases.

B When the distance between X and Y is increased, the separation of the fringes increases.
C When the width of the slit T is decreased, the separation of the fringes decreases.

D There is a dark fringe at P because (YP - XP) is 2λ.
3. Monochromatic light of wavelength 590 nm is incident normally on a plane diffraction grating having 4×10^{5} lines m^{-1}. An interference pattern is produced. What is the highest order visible in this interference pattern?

A 2
B 3
C 4
D 5
4. In a double slit interference arrangement the fringe spacing is w when the wavelength of the radiation is λ, the distance between the double slits is S and the distance between the slits andthe plane of the observed fringes is D. In which one of the following cases would the fringe spacing also be W ?

	wave length	distance between slits	distance betweenslits and fringes
A	2λ	$2 s$	$2 D$
B	2λ	$4 s$	$2 D$
C	2λ	$2 s$	$4 D$
D	4λ	$2 s$	$2 D$

5. Using a diffraction grating with monochromatic light of wavelength 500 nm incident normally, a student found the 2nd order diffracted maxima in a direction at 30° to the central bright fringe. What is the number of lines per metre on the grating?

A 2×10^{4}
B 2×10^{5}
C 4×10^{5}

D 5×10^{5}
6. Which line, \mathbf{A} to \mathbf{D}, in the table gives a correct difference between a progressive wave and astationary wave?

	progressive wave	stationary wave
A	all the particles vibrate	some of the particles do notvibrate
B	none of the particles vibratewith the same amplitude	all the particles vibrate withthe same amplitude
C	all the particles vibrate inphase with each other	none of the particles vibrate inphase with each other
D	some of the particles do notvibrate	all the particles vibrate inphase with each other

7. Stationary waves are set up on a length of rope fixed at both ends. Which one of the followingstatements is true?

A Between adjacent nodes, particles of the rope vibrate in phase with each other.
B The mid point of the rope is always stationary.
C Nodes need not necessarily be present at each end of the rope.
D Particles of the rope at adjacent antinodes always move in the same direction.
8. A wave of frequency 5 Hz travels at $8 \mathrm{~km} \mathrm{~s}^{-1}$ through a medium. What is the phase difference, in radians, between two points 2 km apart?

A0

B $\frac{\pi}{2}$
Сп
D $\frac{3 \pi}{2}$

9. A source emits light of wavelength 600 nm as a train of waves lasting $0.01 \mu \mathrm{~s}$. How many completewaves are sent out?
speed of light $=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
A 5×10^{6}
B 18×10^{7}
C 5×10^{9}
D 5×10^{22}
10.

The graph shows, at a particular instant, the variation of the displacement of the particles in a transverse progressive water wave, of wavelength 4 cm , travelling from left to right. Which one of the following statements is not true?

A The distance $\mathrm{PS}=3 \mathrm{~cm}$.
B The particle velocity at Q is a maximum.
C The particle at S is moving downwards

D Particles at P and R are in phase.
11. In the diagram, \mathbf{P} is the source of a wave of frequency 50 Hz

The wave travels to \mathbf{R} by two routes, $\mathbf{P} \rightarrow \mathbf{Q} \rightarrow \mathbf{R}$ and $\mathbf{P} \rightarrow \mathbf{R}$. The speed of the wave is $30 \mathrm{~m} \mathrm{s-1}$

What is the path difference between the two waves at \mathbf{R} in terms of the wavelength λ of the waves?

A 4.8λ

B 8.0λ

C 13.3λ

D 20.0λ
12. An electromagnetic wave enters a fibre-optic cable from air. On entering the cable, the waveslows down to three-fifths of its original speed.

What is the refractive index of the core of the fibre-optic cable?

A 0.67
B 1.33

C 1.50

D 1.67
13. A diffraction grating has 500 lines per mm . When monochromatic light is incident normally on thegrating the third-order spectral line is formed at an angle of 60° from the normal to the grating.

What is the wavelength of the monochromatic light?

A 220 nm
B 580 nm

C 960 nm

D 1700 nm
14. The diagram shows a ray of light travelling in air and incident on a glass block of refractive index 1.5

What is the angle of refraction in the glass?

A 22.5°

B 23.3°

C 33.1°

D 59.4°

EXAM PAPERS PRACTICE
15. When light of wavelength $5.0 \times 10^{-7} \mathrm{~m}$ is incident normally on a diffraction grating thefourth-order maximum is observed at an angle of 30°.

What is the number of lines per mm on the diffraction grating?

A $\quad 2.5 \times 10^{2}$
B $\quad 2.5 \times 10^{5}$

C 1.0×10^{3}

D 1.0×10^{6}
16. A progressive wave travels along a rope in the direction \mathbf{M} to $\mathbf{N} . \mathbf{X}$ marks a point on the rope.

The wave has a frequency of 5.0 Hz , a wavelength of 1.0 m and an amplitude of 0.20 m .
Where will X be after 0.15 s ?

A below MN by 0.20 m

B above MN by 0.20 m

C nearer \mathbf{N} by 0.15 m
D nearer \mathbf{N} by 0.75 m
17. The diagram shows a string stretched between two fixed points \mathbf{O} and \mathbf{R} which are 120 cm apart.
\mathbf{P} and \mathbf{Q} are points on the string.
$\mathbf{O P}=30 \mathrm{~cm}$
$\mathbf{O Q}=90 \mathrm{~cm}$
For more help, please visit www.exampaperspractice.co.uk

At a certain frequency the string vibrates at its first harmonic.
\mathbf{P} and \mathbf{Q} oscillate in phase.
The frequency is gradually increased.

What is the next harmonic at which \mathbf{P} and \mathbf{Q} will oscillate in phase?

A second

B third

C fourth

D fifth
18. The diagrams show the displacement-distance graph for a wave and the displacement-time graph for a point in the wave.

displacement/m

Which is correct for this wave?

A The amplitude is 3.0 m .

B The wavelength is 6 m .

C The speed is $8.3 \mathrm{~m} \mathrm{~s}^{-1}$.

D The frequency is 0.17 Hz .
19. The diagram shows a stationary wave on a string at one instant in time.
\mathbf{P}, \mathbf{Q} and \mathbf{R} are three points on the string.

Which row is correct?

\mathbf{A}	\mathbf{P} is in antiphase with \mathbf{R}	\mathbf{P} has the same amplitude as \mathbf{Q}
\mathbf{B}	\mathbf{P} is out of phase with \mathbf{R}	\mathbf{P} has the same amplitude as \mathbf{R}
\mathbf{C}	\mathbf{P} is in phase with \mathbf{Q}	\mathbf{P} has the same amplitude as \mathbf{R}
\mathbf{D}	\mathbf{P} is out of phase with \mathbf{Q}	\mathbf{P} has a smaller amplitude than \mathbf{R}

20. Two waves with amplitudes \boldsymbol{a} and $3 \boldsymbol{a}$ interfere.

The ratio is
A 2
B 3
C 4
D infinit

