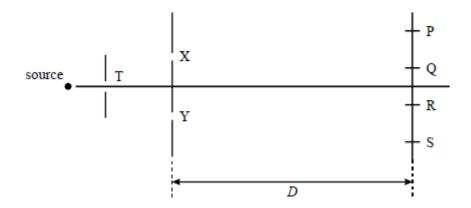


DiffractionTOPIC QUESTIONS



- 1. A narrow beam of monochromatic light falls on a diffraction grating at normal incidence. The second order diffracted beam makes an angle of 45° with the grating. What is the highest ordervisible with this grating at this wavelength?
 - **A** 2
 - **B** 3
 - **C** 4
 - **D** 5

2.

Coherent monochromatic light of wavelength λ emerges from the slits X and Y to form dark fringes at P, Q, R and S in a double slit apparatus. Which one of the following statements is true?

- A When the distance *D* is increased, the separation of the fringes increases.
- **B** When the distance between X and Y is increased, the separation of the fringes increases.
- **C** When the width of the slit T is decreased, the separation of the fringes decreases.
- **D** There is a dark fringe at P because (YP XP) is 2λ .

- 3. Monochromatic light of wavelength 590 nm is incident normally on a plane diffraction grating having 4×10^5 lines m⁻¹. An interference pattern is produced. What is the highest order visible in this interference pattern?
 - **A** 2
 - **B** 3
 - **C** 4
 - **D** 5

4. In a double slit interference arrangement the fringe spacing is W when the wavelength of the radiation is λ , the distance between the double slits is S and the distance between the slits and the plane of the observed fringes is D. In which one of the following cases would the fringe spacing also be W?

	wave length	distance between slits	distance betweenslits and fringes
Α	2λ	2 <i>s</i>	2 <i>D</i>
В	2λ	4 <i>s</i>	2 <i>D</i>
С	2λ	25	4 <i>D</i>
D	4λ	25	2 <i>D</i>

5. Using a diffraction grating with monochromatic light of wavelength 500 nm incident normally, a student found the 2nd order diffracted maxima in a direction at 30° to the central bright fringe. What is the number of lines per metre on the grating?

- A 2 × 10⁴
- B 2 × 10⁵
- C 4 × 10⁵

- **D** 5 × 10⁵
- 6. Which line, **A** to **D**, in the table gives a correct difference between a progressive wave and astationary wave?

	progressive wave	stationary wave
Α	all the particles vibrate	some of the particles do notvibrate
В	none of the particles vibratewith the same amplitude	all the particles vibrate withthe same amplitude
С	all the particles vibrate inphase with each other	none of the particles vibrate inphase with each other
D	some of the particles do notvibrate	all the particles vibrate inphase with each other

- 7. Stationary waves are set up on a length of rope fixed at both ends. Which one of the following statements is true?
 - A Between adjacent nodes, particles of the rope vibrate in phase with each other.
 - **B** The mid point of the rope is always stationary.
 - **C** Nodes need not necessarily be present at each end of the rope.
 - **D** Particles of the rope at adjacent antinodes always move in the same direction.

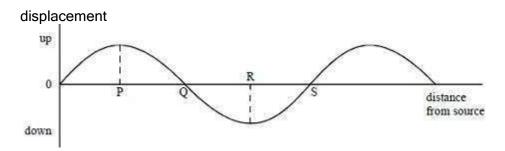
8. A wave of frequency 5 Hz travels at 8 km s⁻¹ through a medium. What is the phase difference, in radians, between two points 2 km apart?

A0

 $\overline{2}$

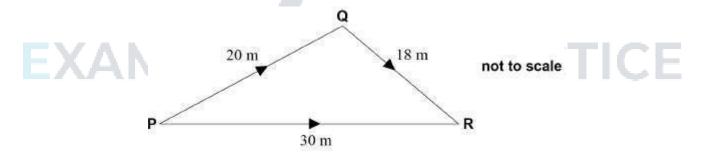
Сп

2


9. A source emits light of wavelength 600 nm as a train of waves lasting 0.01 μs. How many completewaves are sent out? speed of light = 3 × 10⁸ m s⁻¹

PERS PRACTICE

- 5 × 10⁶
- В 18 × 10⁷
- 5 × 10⁹
- 5 × 10²² D


10.

The graph shows, at a particular instant, the variation of the displacement of the particles in a transverse progressive water wave, of wavelength 4 cm, travelling from left to right. Which one of the following statements is **not** true?

- A The distance PS = 3 cm.
- **B** The particle velocity at Q is a maximum.
- **C** The particle at S is moving downwards
- **D** Particles at P and R are in phase.

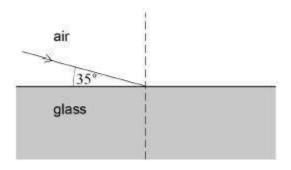
11. In the diagram, **P** is the source of a wave of frequency 50 Hz

The wave travels to **R** by two routes, $P \rightarrow Q \rightarrow R$ and $P \rightarrow R$. The speed of the wave is 30 m s⁻¹

What is the path difference between the two waves at **R** in terms of the wavelength λ of the waves?

- **A** 4.8λ
- **B** 8.0λ
- **C** 13.3λ
- **D** 20.0λ
- 12. An electromagnetic wave enters a fibre-optic cable from air. On entering the cable, the waveslows down to three-fifths of its original speed.

What is the refractive index of the core of the fibre-optic cable?


- **A** 0.67
- **B** 1.33
- **C** 1.50
- **D** 1.67
- 13. A diffraction grating has 500 lines per mm. When monochromatic light is incident normally on the grating the third-order spectral line is formed at an angle of 60° from the normal to the grating.

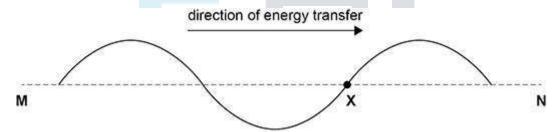
What is the wavelength of the monochromatic light?

- **A** 220 nm
- **B** 580 nm
- **C** 960 nm
- **D** 1700 nm

14. The diagram shows a ray of light travelling in air and incident on a glass block of refractive index1.5

What is the angle of refraction in the glass?

- **A** 22.5°
- **B** 23.3°
- **C** 33.1°
- **D** 59.4°



15. When light of wavelength 5.0×10^{-7} m is incident normally on a diffraction grating the fourth-order maximum is observed at an angle of 30° .

What is the number of lines per mm on the diffraction grating?

- **A** 2.5×10^2
- **B** 2.5×10^5
- **C** 1.0×10^3
- **D** 1.0×10^6
- 16. A progressive wave travels along a rope in the direction **M** to **N**.**X** marks a point on the rope.

The wave has a frequency of 5.0 Hz, a wavelength of 1.0 m and an amplitude of 0.20 m.

Where will X be after 0.15 s?

- A below MN by 0.20 m
- $\boldsymbol{B}\,$ above \boldsymbol{MN} by 0.20 m
- **C** nearer **N** by 0.15 m
- $\textbf{D} \quad \text{nearer } \textbf{N} \text{ by } 0.75 \text{ m}$
- 17. The diagram shows a string stretched between two fixed points ${\bf O}$ and ${\bf R}$ which are 120 cm apart.

P and **Q** are points on the string.

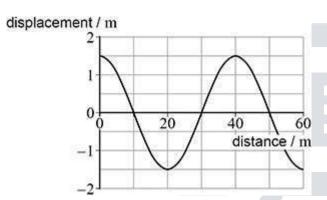
OP = 30 cm

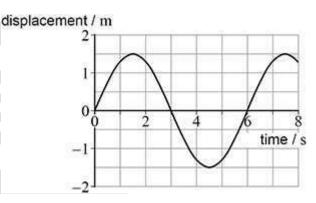
OQ = 90 cm

For more help, please visit www.exampaperspractice.co.uk

At a certain frequency the string vibrates at its first harmonic.

P and Q oscillate in phase.


The frequency is gradually increased.

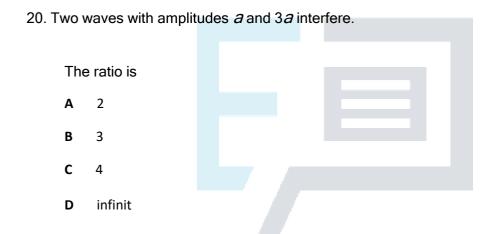


What is the next harmonic at which P and Q will oscillate in phase?

- **A** second
- **B** third
- **C** fourth
- **D** fifth
- 18. The diagrams show the displacement-distance graph for a wave and the displacement-time graph for a point in the wave.

S PRACTICE

Which is correct for this wave?


- A The amplitude is 3.0 m.
- **B** The wavelength is 6 m.
- ${f C}$ The speed is 8.3 m s⁻¹.
- **D** The frequency is 0.17 Hz.
- 19. The diagram shows a stationary wave on a string at one instant in time.
 - $\boldsymbol{P},\,\boldsymbol{Q}$ and \boldsymbol{R} are three points on the string.

Which row is correct?

Α	P is in antiphase with R	P has the same amplitude as Q
В	P is out of phase with R	P has the same amplitude as R
С	P is in phase with Q	P has the same amplitude as R
D	P is out of phase with Q	P has a smaller amplitude than R

