Mark schemes

(a) 0.01 / 0.0105;

(allow 1 mark for 52 500 / 5 000 000)

2

(b) (at the tissues at low pp oxygen) the shrew's haemoglobin is lesssaturated with oxygen / has reduced affinity; oxyhaemoglobin dissociates more readily / haemoglobin releases oxygen more readily / more oxygen released; allowing greater demand / respiration rate;

3

[5] (a) 0.1 - 0.6 seconds;

Volume (in left ventricle) increasing / ventricle filling;

2

(b) (i) 2 marks for correct answer of 75 (beats) per minute;1 mark if heart beat correctly identified as lasting 0.8 seconds;

2

(ii) 70 cm³;

1

(c) Multiply them;

1

(d) 750;

Accept a small increase – up to 800 cm³

1

(e) (i) 4:1/4;

Ratio must be expressed in simplest terms

1

(ii) 18 cm³;

1

[9] (a) B – It is the 2nd contraction / occurs (immediately) after A / occurs after atrium;

Larger / more force / more pressure;

(b)
$$\frac{60}{\text{time for 1 cycle}}$$
$$= 37 \text{ to } 38$$

allow 1 mark if correct working shown

max 2

(iii) Haemoglobin in red blood cells /
 Haemoglobin too large to pass through membrane of RBC /
 Red blood cells (containing haemoglobin) too large to pass
 through wall;

1

[9] (a) Large surface area to volume ratio;

5

For diffusion;

OR

Flat / thin;

So oxygen can reach all haemoglobin / centre rapidly / short pathway;

max 2

(b) (i) Partially permeable / allows water through but not sucrose;

Accept semi-permeable / selectively permeable.

1

(ii) Phospholipid (in membrane) / bilayer dissolved / broken down; Allows haemoglobin / contents to leak out;

2

[5

1 (a) Structure resulting from aggregation of several polypeptide chanins / tertiary structures /

6 eq:

1

(b) Low pH / (more)H⁺; due to (increased) CO₂ (increased) respiration;
 (ignore refs to buffering action of haemoglobin)
 (increased) dissociation of haemoglobin;
 Oxygen diffuses from r.b.c. to tissues;

3

1

(c) Deaminated for use in respiration / used in protein synthesis / suitable e.g.;

[5] (a)

7

	glucose	sodium ions	haemoglobin
Tissue fluid	√	V	X ;
Blood plasma	√	V	X ;

Mark for each correct row

Hydrostatic pressure higher than osmotic "effect"; (b) Forces / squeezes / pushes out / water / small molecules / ions / examples; Contain different / more than one tissue / type of cell; [4] (a) 8 (b) 0.8(s)1 0.4 (s) as events in right ventricle same as in left; (c) 1 (d) (i) 0 - 0.1 / 0.4 - 0.9 because the volume increasing / ventriclefilling / blood entering; 1 from 0.9 / 0.1 – 0.4 because volume decreasing / ventricle (ii) emptying / blood leaving; 1 Accept any two figures from within the range. Correct answer of 15.75 / 15.8 / 16 = 2 marks (e) Incorrect answer but clear understanding that 45cm³ is 100% = 1 mark [**7**] (a) Caused by blood leaving the heart / entering artery; 9 As a result of ventricles contracting / systole; 2 (b) Stretch as pressure increases; Recoil / spring back as pressure drops; Do not accept contract and relax in this context. Allow 1 mark for 'stretch and recoil' without reference to pressure. 2 (c) Both have an endothelium / epithelium / squamous cells; Because there are big differences; **[5]** (i) 10 any correct named example e.g. lung cancer / bronchitis much lower in women than in men; 2 (ii) easier to compare if sample size effectively the same;

different numbers of people in each group;

[4]

11

(in a mixture of gases or a liquid);

1

(b) 37-38%

Accept 36 - 39

(c) muscle contraction causes increased respiration;increased CO₂ production lowering blood pH / lactate released lowering blood pH; increased heat released therefore increased temperature; increased O₂ consumption lowering tissue PO₂;

4

(d) haemoglobin has a lower affinity for oxygen;more O₂ for respiration;

2

(e) **3.4 times = 2 marks**

(incorrect answer in which candidate shows amount of oxygen removed at rest is 4.6 and amount removed during exercise is 15.8 = 1 mark)

2

(f) Nearly all O₂ is transported by haemoglobin / v. little transported in plasma;

EITHER

Haemoglobin is (nearly) fully saturated with O₂ at the alveoli both at rest and when exercising;

Therefore no (very little) further increase is possible;

OR

Haemoglobin is only 95% saturated with oxygen at the alveoli;

Therefore enriching inspired / air with oxygen will raise this to 100%;

3

(g) increased depth / rate / pulmonary ventilation; increase stroke volume / heart rate / Q increases blood flow rate; arterioles
 [Accept artery] supplying the muscles dilate / vasodilation / greater proportion of blood flow to the muscles;

max 3

[15] (a) (i) 0.4(s);

12

(ii)
$$\left\{ \frac{60}{0.8} \right\} = 75$$
;

1

(iii) 0.26 (between 0.4 - 0.14) × 75 (or from (a)(ii)) = 19.5(s) OR

0.25 (between 0.4 - 0.15) × 75 (or from (a)(ii)) = 18.75(s) (no double penalty)(allow rounding only if working shown) 1 (b) (ii) right ventricle; same pattern / description (as left ventricle) but lower (pressure); 2 (c) increase in volume / size of ventricles (accept heart) / hypertrophy of heart / increased strength of heart muscle / increased strength of contraction; more blood leaves heart in each contraction / increase in stroke volume: [7] (a) slow decrease in speed until reaches arterioles then rapid decrease; 13 increase in total cross-sectional area of blood vessels / more friction; 2 (b) elastic tissue / fibres / wall; expands / recoils / springs back (to smooth the pressure surges); (recoil linked to elastic tissues) 2 walls / endothelium one cell thick / made of flattened cells; short diffusion pathway (c) OR narrow lumen; reduces rate of flow / more time for diffusion; OR gaps / pores between cells (accept fenestrations between cells); increased rate of diffusion / fluid movement out of vessel; 2 (d) larger / wider lumen so greater volume carried; 1 [7] (a) Hb (in A) has greater affinity for O2; becomes saturated at low(er) ppO₂ / more saturated at same ppO₂ / unsaturated at very low ppO₂; able to supply enough O₂ to its tissues; 3 (b) fish B has a greater rate of respiration (accept more O₂ needed for respiration); Hb dissociates more readily (than A); more O₂ supplied; 2 max [5]

	(a)	1. pı	essure receptors / baroreceptors / stretch receptors in aorta / carotid arteries / c	arotid
15	sinu	2. se (reje 3. im 4. to 5. re 6. de	ect carotid body) end impulses to cardiovascular centre / medulla / cardio-inhibitory centre; ect signals / messages / electronic) epulses via parasympathetic nerves / vagus; (accept inhibitory nerve) SAN; lease of ACh / inhibits SAN / decreases impulses from SAN; ecreases impulses to AVN / decreased stimulation of AVN / decreases impulses emAVN;	
		111	(any reference to signals / messages / electronic disqualifies points 3 and 5 only)	6
	(b)	2. S	hibit impulses in sympathetic nerves / from cardio-acceleratory centre; AN not stimulated / noradrenaline not released so heart rate lowers / does not ease;	
		(acc	ept inhibits / blocks synapses);	2 [8] QWC 1
		(a)	(i) atrioventricular valve / (bi)cuspid valve / mitral valve;	
16				1
		(ii)	(valves close) due to high blood pressure / when ventricles contract; Y prevent valve from being inverted / restricts / stops valve movement; (allow AV valve, disqualify tricuspid)	2
	(b)	(i)	B;	1
		(ii)	$\underline{5} \times 60 = 37.5 \text{ s}$ 8 correct method	1
			correct answer	-
			[6] (a)	2 <u>left</u> ventricle;
17				1
	(b)	(i)	(left) ventricle / heart relaxes / diastole / filling / not contracting;	1
		(ii)	elastic tissue / wall; recoils / springs back (to maintain pressure); ("contraction / muscle causing recoil" negates second point)	2

(c)	hear	ect answer, 666 to 667 <i>gains 2 marks</i> ; <i>allow 1 mark for principle;</i> correct tiretbeat as 90 (ms) or 630÷7 / incorrect time identified from graph;	me for 1	
(d)	corre	ect answer, 0.03, gains 2 marks; (allow 1 mark for correct working, 16.6 ÷ 550, if answer wrong)		
			[8] (a)	ymph;
18			1	
(b)	disq	w drawn from right to left . no mark (if wrong direction ualify) correct reference to blood entering capillary ng higher hydrostatic pressure;	1	
(c)	prote "high grad	Forces water out;idea that HP is "higher" than WP; eins remain in blood (increases WP); idea that WP is now ner" than HP; water returns by osmosis / along WP lient; er moves out at arteriole end and back in (at venule end);		
(d)	•	respiration rate means high demand for oxygen;shrew moglobin has lower affinity for oxygen / gives up O₂ more lily;	4 max	
		w Hb lower saturation rate than human Hb at same ial pressure / more O ₂ released at same pp;	3	[9]
19 (a) (i) (CO ₂ isproduced (in respiration); forms carbonic		
		acid / hydrogen ions released;		
		(lactic acid produced negates both points)	2	
	(ii)	low pH because high rate of respiration; cells need more O_2 ; more O_2 released / O_2 released faster;	2 max	
(b)	(i)	high altitudes have a low <u>partial pressure</u> of O_2 ; high saturation / affinity of Hb with O_2 (at low partial pressure O_2); so sufficient / enough O_2 supplied to cells / tissues;		
			2	

		(ii)	difficult to unload / dissociate O ₂ (at tissues);	
				1 [7]
	(a)	end	dothelium / tunica intima (accept endothelial cells);	
20				1
	(b)	(<i>rej</i> e mai	stic tissue allows recoil fect if wording implies a muscle e.g. contract / relax)(ignore expand); intains blood pressure / constant / smooth blood flow t increases blood pressure);	2
	(c)		asuring radius / 12 mm / 12.5 mm / 1.2 cm / 1.25 cm; correct calculation / 3.14 2 x 12 = 452 / 3.14 x 12.5 x 12.5 = 490 / 491; allow for magnification ÷100 = 4.52 / 4.9;	-
			(allow 1 mark for correct calculation using incorrect radius)	3
			[6] (a) (cells) require oxygen / glucose for respiration	
21	(b)	-	lls) require oxygen / glucose to keep cells alive; cept correctly named nutrient) 65;	1
		(ii)	fetal	

3

(ii) glycogen is a carbohydrate / broken down to glucose, linked to RQ; with no caffeine, RQ nearer 1.0 / less carbon dioxide exhaled and more oxygen inhaled (or vice versa) / with caffeine higher proportion of fats / fatty acids respired; increased time to exhaustion suggests slower use of glycogen:

[10]

(a) 1. rate of respiration increases (in muscle cells);

23 2.

2. carbon dioxide concentration increases / pH falls / H+

increases / acidity increases;

- chemoreceptors in aortic / carotid bodies / medulla (accept reference to aorta / carotid arteries not sinus);
- 4. (impulses to) medulla / cardioaccelerator centre;
- 5. increased frequency of impulses (award only once);
- 6. along sympathetic pathway to sinoatrial node / SAN (not pacemaker);

6

(b) (i) through cardiac muscle;to atrioventricular node;along bundle of His / Purkyne fibres;

2 max

(ii) sinoatrial node in the (right) atrium;trace from healthy person is identical to the trace for the diseased heart in the region of the atria / only differences seen in trace for ventricles;

[10] (a) beating / pumping of heart / contraction of ventricles / heart;

24

(b) (at arterial end) hydrostatic pressure / blood pressure;greater than pressure of water potential gradient / greater than osmotic uptake;

2

(c) removed by lymphatic system / lymph; returned to blood;

2

(d) less protein in blood; water potential gradient is lower (less – ve / higher Ψ).

2

[7]

(a) (i) 62

25 ignore units

					1
	(ii)	fetal haemoglobin has higher affinity for oxygen / takes up oxygen (becomes saturated) at lower partial pressure; at partial pressures when adult haemoglobin dissociates fetal haemoglobin takes up oxygen;	1		2
(b)	(i)	new 'S' shaped curve draw to the right of the adult curve;			1
	(ii)	haemoglobin dissociates / unloads more readily / more oxygen delivered to cell / muscles / respiring tissue; at a particular partial pressure more oxygen is released;			
			[6] (a)	(i)	2 0.3 s;
					1
	(ii)	0.2 - 0.4 s;			1
(b)	thick	ter / more muscle in the left ventricle;			
					1
(c)	Arte	ry			
	2. m	ost elastic tissue, which smoothes out flow / maintains pressure; ost muscle which maintains pressure;	pressure surç	ges;	
	Vein				
	5. th	in wall does not have to withstand high pressure;			
	Capi	illary			
	All v	essels			
	8. ha	ave endothelium that reduces friction;		6 ma	ıx [9]
	(b)	(b) (i) (ii) (ii) (iii) (iii) (b) thick (c) Arte 1. th 2. m 3. m 4. m Vein 5. th Capi 6. th 7. or All v	(becomes saturated) at lower partial pressure; at partial pressures when adult haemoglobin dissociates fetal haemoglobin takes up oxygen; (b) (i) new 'S' shaped curve draw to the right of the adult curve; (ii) haemoglobin dissociates / unloads more readily / more oxygen delivered to cell / muscles / respiring tissue; at a particular partial pressure more oxygen is released; (ii) 0.2 - 0.4 s; (b) thicker / more muscle in the left ventricle;	(becomes saturated) at lower partial pressure; at partial pressures when adult haemoglobin dissociates fetal haemoglobin takes up oxygen; (b) (i) new 'S' shaped curve draw to the right of the adult curve; (ii) haemoglobin dissociates / unloads more readily / more oxygen delivered to cell / muscles / respiring tissue; at a particular partial pressure more oxygen is released; (ii) 0.2 - 0.4 s; (b) thicker / more muscle in the left ventricle; (c) Artery 1. thickest wall, enabling it to carry blood at high pressure / withstand 2. most elastic tissue, which smoothes out flow / maintains pressure; 3. most muscle which maintains pressure; 4. muscle in wall to control blood flow; Vein 5. thin wall does not have to withstand high pressure; Capillary 6. thin wall, allowing diffusion / exchange; 7. only endothelium present, allowing short diffusion pathway; All vessels	 (ii) fetal haemoglobin has higher affinity for oxygen / takes up oxygen (becomes saturated) at lower partial pressure; at partial pressures when adult haemoglobin dissociates fetal haemoglobin takes up oxygen; (b) (i) new 'S' shaped curve draw to the right of the adult curve; (ii) haemoglobin dissociates / unloads more readily / more oxygen delivered to cell / muscles / respiring tissue; at a particular partial pressure more oxygen is released; (ii) 0.2 - 0.4 s; (b) thicker / more muscle in the left ventricle; (c) Artery 1. thickest wall, enabling it to carry blood at high pressure / withstand 2. most elastic tissue, which smoothes out flow / maintains pressure; 3. most muscle which maintains pressure; 4. muscle in wall to control blood flow; Vein 5. thin wall does not have to withstand high pressure; Capillary 6. thin wall, allowing diffusion / exchange; 7. only endothelium present, allowing short diffusion pathway; All vessels

(a) (i)

arteriole;

				_
27				1
	 (ii) any two oxygen / glucose / amino acids / fatty acids / glycerol / minerals; (b) small diameter / lumen / small mean cross sectional area / increase in (total) cross sectional area; more surface in contact with blood / greater friction / resistance; (c) (i) artery; (ii) stretches / expands to accommodate increase in blood volume / when ventricle contracts / increase in blood pressure; recoils when blood volume decreases / when ventricle relaxes / blood pressure decreases; [7] (a) less muscle / thin(ner) wall in left (ii) pressure of left ventricle higher than pressure of left atrium; (iii) closing of the semi-lunar valves / pocket valves; pressure in artery / aorta is higher than ventricle; [4] (a) (i) curve to right of curve for oxygen unloaded / given up / affinity decreased / reduced saturation; oxyhaemoglobin dissociates at higher oxygen concentration / partial pressure / more oxygen unloaded at the same ppO₂; (b) (aerobic) respiration will produce carbon dioxide / anaerobic respiration produces lactate; carbon dioxide dissolves in blood forming acid; increases hydrogen ion concentration; 	1		
	/h.)			1
	(D)			
		more surface in contact with blood / greater friction / resistance;		2
	(c)	(i)	artery.	
	(0)	(')	artory,	1
		(ii)	volume / when ventricle contracts / increase in blood pressure; recoils when blood volume decreases / when	
			[7] (a) less muscle / thin(ner) wall in le	2 ft atriu
20				٦.
20				1
	(b)	(i)	pressure of left ventricle higher than pressure of left atrium;	1
		(ii)	·	2
			[4] (a) (i) curve to right of curve fo	2 or pH 7.
29				7.
				1
		(ii)	oxyhaemoglobin dissociates at higher oxygen concentration / partial pressure /	
				2
	(b)	produces lactate; carbon dioxide dissolves in blood forming acid; increases		
		-		3
	(-)	4		
	(a)	Ι.	permeable capillary wall / membrane;	

3.

30

3. flattened (endothelial) cells, reduces diffusion distance;

- 4. fenestrations, allows large molecules through;
- 5. small diameter / narrow, gives a large surface area to volume / short diffusiondistance;
- 6. narrow lumen, reduces flow rate giving more time for diffusion;
- 7. red blood cells in contact with wall / pass singly, gives short diffusion distance /more time for diffusion;

(allow 1 mark for 2 features with no explanation)

4 max

- (b) 1. (hydrostatic) pressure of blood high at arterial end;
 - 2. fluid / water / soluble molecules pass out (reject plasma);
 - 3. proteins / large molecules remain;
 - 4. this lowers the water potential / water potential becomes more negative;
 - 5. water moves back into venous end of capillary (*reject tissue fluid*) by osmosis / diffusion;
 - 6. lymph system collects any excess tissue fluid which returns to blood /circulatory system / link with vena cava / returns tissue fluid to vein;

6 [10] QWC 1