Mark schemes

1

(a) (i) Changes shape of antitrypsin;

Reference to hydrogen/ionic/disulfide bonds; No longer attaches to/interacts/ reacts with trypsin;

Accept protease

2

(ii) Higher the concentration of hydrogen peroxide, more amino acids/ proteins affected;

More antitrypsin molecules change shape;

2

(b) (Longterm smokers) inhale a lot of hydrogen peroxide;
 Smokers have more active enzyme that damages lung tissue;
 Reducing gas exchange surface;

2 max

[6] (a) Active transport against / facilitated down with concentration gradient;

Accept answers in terms of water potentials

Active transport uses ATP/energy, /facilitated doesn't; Reject along/across gradient

Active uses carrier (proteins), / facilitated (often) uses channel (proteins);

2 max

(b) Lipid/fatty acid part of membrane is non-polar/hydrophobic;

Accept lipid/fatty acid bilayer

Oxygen and carbon dioxide small/ non-polar (molecules);

Oxygen/carbon dioxide can diffuse through/dissolve in/ get between molecules in this layer;

Down a concentration gradient;

2 max

(c) Brings more oxygen/removes carbon dioxide;

Maintains diffusion/concentration gradients;

Between alveoli and blood/capillaries;

Reject references to surface area

2 max

(a) (explanation must be linked to structures to gain second mark for each linked pair)

filaments / lamellae ;	large SA;
gill plates or secondary lamellae;	
large number of capillaries;	to remove oxygen / to maintain a gradient;
thin epithelium;	short diffusion pathway;
pressure changes;	to bring in more water / to maintain gradient;
countercurrent flow (or description);	exchange / diffusion along whole length / concentration gradient maintained / equilibrium not achieved / blood always meets water with higher oxygen concentration;

6

(b) (i) requires 20 cm³ of oxygen / extracts 7.2 cm³ of oxygen / reject if referring to volume of water

 $\frac{20}{7.2}$:

 $2.7 / 2.8 (dm^3h^{-1});$

(correct answer award 2 marks)

2

(ii) high (relative) density / heavy; requires large input of energy as difficult to push back out;

2

(c) (for each pair second point must be linked to first) to provide same amount of oxygen; need to have more water flowing over gills;

metabolic rate / respiration increases (with increase in temperature); so more oxygen required;

2 max

[12] QWC 1

(a) 1. mouth opens, operculum / opercular valve shuts;

- 2. floor of mouth lowered;
- 3. water enters due to decreased pressure / increased volume;
- 4. mouth closes, operculum / opercular valve opens;
- 5. floor raised results in increased pressure / decreased volume;
- 6. high / increased pressure forces / pushes water over gills;

- (b) 1. alveoli provide a large surface area;
 2. walls of alveoli thin to provide a short diffusion pathway;
 3. walls of capillary thin / close to alveoli provides a short diffusion pathway;
 4. walls (of capillaries / alveoli) have flattened cells;
 5. cell membrane permeable to gases;
 6. many blood capillaries provide a large surface area;
 - 7. intercostal / chest muscles / diaphragm muscles / to ventilate lungs / maintain a diffusion / concentration gradient;
 - 8. wide trachea / branching of bronchi / bronchioles for efficient flow of air;
 - 9. cartilage rings keep airways open; (reject moist and thin membranes)

6 max

[10] (a) exchange / diffusion across body surface / skin;

5 short <u>diffusion</u> pathway / distance / large SA:V ratio;

2

(b) large numbers of lamellae so large SA;lamellae thin so short (diffusion) pathway to blood / capillaries; high rate of oxygen uptake for respiration / energy release;

(accept more oxygen)

3

[5] (a) contraction of (diaphragm) <u>muscles</u> flattens diaphragm;

6

contraction of intercostal muscles raises ribcage; increase in volume decreases pressure;

3

(b) (i) tidal volume increases steeply, then increase slows down after 10 to 15 km h⁻¹;

1

(ii) breathing rate increases slowly then steeply after 10 to 15 km h⁻¹; (max 1 if no reference to speed where change occurs in either (i) or (ii))

1

(c) $20 \times 2.75 = 55 \text{ dm}^2$;

(award 1 mark for correct method i.e. tidal volume x rate);

[7]

(i) (waxy so) impermeable to water / waterproof / stops water7 passing through;

1

2

(ii) reference to hairs / position of stomata (sunken stomata / stomata in pits)

```
LINKED to reduced air movement / trap layer of air /
            trap water vapour (reject water) / maintains humidity;
            reduces diffusion gradient / concentration gradient of water /
            water potential gradient;
            0R
            stoma can close;
            reduces area for evaporation or transpiration;
                                                                                                          2
                                                                                     [3] (a)
                                                                                              (i)
                                                                                                     one feature;
8
                  then linked Explanation;
                  (many) filaments / lamellae / secondary lamellae;
                  so large surface area;
                  large number of capillaries; (NOT "good blood supply")
                  maintains a diffusion gradient / removes oxygen;
                  thin epithelium / lamellae wall;
                  short diffusion pathway;
                                                                                                          2
            (ii)
                  maintains diffusion / concentration gradient / equilibrium
                  not reached:
                  diffusion occurs across whole length (of lamellae / gill);
                                                                                                          2
      (b)
            less energy needed / continuous flow of water or O<sub>2</sub>;
                                                                                                          1
                                                                                                              [5
      1 (a)
             (diffusion) gradient will be maintained all the way along the gill / the amount of oxygen in
9
            the water is always higher than in the blood / the numbers in the water are always higher
            than in the blood:
            more oxygen will diffuse into the blood;
                                                                                                          2
      (b)
            100 cycles per minute;
                        (principle of 60 / x or 0.6 seen gains one mark)
                                                                                                          2
                                                                                                              [4]
      (i)
           Because there are big differences;
```

40			
10		any correct named example e.g. lung cancer / bronchitis much lower in women than in men;	
			2
	(ii)	easier to compare if sample size effectively the same; different numbers of people in each group;	
		[4] (a) (gills have) lamellae on file	2 aments;
11	oto of	hoth:	
ш	OIS OI	both;	2
	(b)	(i) all 3 go up;	
	(D)	Accept converse	
		, and the second	1
		(ii) more oxygen can be supplied; for more respiration;	
		Accept answer relating to CO ₂	
		[5] (a) Immediate / rapid increase, steady rise and plateau clearly id	2 entified;
12		Ignore references to rest period if clearly identified as such	1
	/ b\	Find value of nulmanary vantilation from graph / 26, 29;	-
	(b)	Find value of pulmonary ventilation from graph / 26-28; Divide by breathing rate / 20;	
			2
	(c)	Air is from nose / trachea / bronchi / not been in alveoli / dead space;	
		Gas exchange / diffusion only in alveoli / not in these structures;	2
		[5] (a) Epithelium of alveolus, capillary wall / epithelium / endothelium,	plasma;
13			1
-	/ b \	Call walls	_
	(b)	Cell wall; Capsule;	
		Flagellum:	

Flagellum;

Mesosomes;

Plasmid;

Genetic material / DNA / nucleoid;

Ribosomes;

Accept references to size only if some idea of range is given

max 2

Large (surface) area; For diffusion; (c)

Short distance to centre of cell / to all haemoglobin; For diffusion;

2

(d) (i) Correct answer of approximately 7800 / 8000 = 2 marks
Incorrect answer but clearly derived by
dividing diameter of cell A by 7 = 1 mark

2

1

(ii) Idea of cut through maximum diameter / middle;

[8]

14

$$\frac{10}{20} \times measurment / \frac{1}{2} \times measurement$$
 (a) ;

= 1.25 to 1.5;

allow 1 mark if correct working shown

max 2

(b) <u>Maintains</u> concentration gradient (over whole length of gill) / diffusion can occur over whole gill;

More oxygen enters blood (/ more CO2 leaves);

<u>More</u> (aerobic) respiration / <u>more</u> energy release in muscle / for swimming; 'more' needed ONCE only

3

[5] (a) Diaphragm (muscle) contracts;

15

Flattens / Increases volume of chest;

Reduced pressure allows air to enter;

3

(b) Allows comparison;

As organs differ in size / as larger organs will need more blood;

2

(c) 2 marks for 40.91 / 40.9 / 41 1 mark for 59.09 / 59.1 / 59

2

(d) (i) Some oxygen still in lungs (which will enter the blood) /removal of carbon dioxide (from blood);

1

(ii) More blood available for other organs;Supplying oxygen / glucose / removing carbon dioxide;OR

		Diaphragm muscles not contracting (as not breathing); Will not require (as much) oxygen / glucose;	2
			[10]
	(a)	Muscles (associated with breathing) relax;	
16			1
	(b)	Produces lower pressure (and air moves in down pressure gradient);	1
		[2] (a) (i) less at A / more	re at B
17		(accept inspiration and expiration as equivalent to A and B)	1
		(ii) carbon dioxide diffuses / passes / into alveoli / from blood; as higher concentration in blood / low concentration in alveolus;	
		(first mark for site and direction, second for cause)	2
	(b)	curve increases; (reject if decreases) then levels out;	
		·	2
	(c)	(i) contract; ribs move upwards / out;	
		increasing volume / decreasing pressure in chest / thorax / lungs;	3
		(ii) intercostal muscles relax; (if you can ignore ref to internal contracting, do so)	1
		[9] (a) increasing carbon dioxide concentration / partial pro	1 essure
18		(decrease in oxygen negates)	
			1
	(b)	(oxygen is used in) respiration therefore diffuses (from tracheae) to tissues;oxygen unable to enter organism;	2
	(c)	spiracles not open all the time;therefore there is less water loss	
		(by diffusion through spiracles):	

1

1

1

1

1

2

3

[5]

For diffusion:

2

(b) (i) Epithelium / epithelial / squamous / pavement cells; Reject endothelium.

(ii) 0.11 μm;

(c) (i) Less oxygen / more carbon dioxide / more water vapour; Two differences required, but only one mark for this part of the question.

(ii) Gas exchange takes place in alveoli / does not take placein trachea;

- (d) (i) Pulmonary artery;
 - (ii) Concentrations reach equilibrium / become equal;
 Diffusion occurs when there is a concentration gradient (so some will remain in blood);
 OR
 Lung cells / vessel cells respire;

Add / produce carbon dioxide;

2

[9] (a) 235–240;;

20

(one mark for an answer between 200-300 based on 2 - 3 stomata in 0.01mm²

Alternatively, one mark for calculating the area of the rectangle correctly as 0.016 – 0.017mm²)

(b) grows in arid / dry conditions;less surface area;(rate of) transpiration / water loss would be reduced;

(i) high / higher CO₂ concentration / lack of oxygen;

(ii) CO₂ asphyxiates / is toxic; lack of oxygen for (aerobic) respiration; OR lack of energy / ATP (for pumping movements); reduced muscle function / muscle fatigue 2 max (b) removal of (excess) CO₂ / oxygen to break down lactate / to repay oxygen debt / to enable aerobic respiration; 1 [4] (a) up and out; 22 (b) (i) does not require work / effort / involve muscle contraction / energyexpenditure; 1 (ii) active as it involves contraction of muscles; 1 (c) liver moves back;increases volume of lungs; pressure lower (in lungs than outside); 3 max (d) maximum of three marks for description, points 1 to 4 1 inhaled air contains more oxygen than exhaled air; 2 inhaled air contains less carbon dioxide than exhaled air; 3 inhaled air contains less water (vapour); 4 <u>relative amount / percentage</u> of nitrogen also changes; 5 respiration results in lower blood oxygen / higher blood carbon dioxide; 6 oxygen enters blood / carbon dioxide leaves blood in alveoli; 7 by diffusion; 8 water vapour diffuses from moist surface; 6 max [12] Large surface area provided by lamellae / filaments increases diffusion / makes (a) 23 diffusion efficient;; **Q** Candidates are required to refer to lamellae or filaments. Do not penalise for confusion between two

Thin epithelium / distance between water and blood;

2.

	3.	Water and blood flow in opposite directions / countercurrent;	
	4.	(Point 4) maintains concentration gradient (along gill) / equilibrium not reached water always next to blood with lower concentration of oxygen;	/as
	5.	Circulation replaces blood saturated with oxygen;	
	6.	Ventilation replaces water (as oxygen removed);	6
(b)	Mixi	ng of air and water (at surface);	v
	Air ŀ	nas higher concentration of oxygen than water;	
	Diffu	usion into water;	
	Plar	nts / seaweeds near surface / in light;	
	Prod	duce oxygen by photosynthesis;	2 max
(c)	Not	much oxygen near sea bed;	
		dfish haemoglobin (nearly) saturated / loads readily at / has higher affinity for gen at low <u>partial pressure</u> (of oxygen);	2
(d)	The	chimpanzee and the bonobo are more closely related (than to the gorilla);	
	The	y have identical amino acids / one of the amino acids is different in the gorilla;	2
		[12] (a) Phagocytes engulf / ingest pathogens / microorganisms / bacte	
	Pha	gocytes destroy pathogens / microorganisms / bacteria / viruses;	
	Lun	g diseases are caused by pathogens / microorganisms / bacteria / viruses; • • • • • • • • • • • • • • • • • • •	2 max
(b)	(i)	Alveoli / lungs will not inflate / deflate fully / reduced lung capacity;	2 max
		Breathing out particularly affected / no longer passive;	2
	(ii)	Alveolar walls thicken;	
		Longer <u>diffusion</u> pathway;	
		Scarred / fibrous tissue;	
		Reduces surface area (for gaseous exchange);	

Q Diffusion is essential for 2nd point and surface area for 4th point. (c) (i) Cancer develops 20 – 30 years after exposure (to asbestos); 1 (ii) Smoking / air pollution / specified industrial source; [10] (a) Many people do not go to the doctor; (i) 25 (ii) 36000: No marks awarded for working here as calculation is very straightforward 1 (b) Same sugars / antigens on bacteria / nerve cells; Do not accept references to same shape as equivalent to complementary. Bind with antibody / form antigen-antibody complex; Reject react Have complementary shape / fit binding site; Reject active site 3 (c) Diaphragm will not move down / flatten / contract; Ignore references to breathing out Thoracic cavity / lung volume not increased so cannot breathe in; [**7**] (a) (i) Through alveolar epithelium; 26 Through capillary epithelium / endothelium; Accept: Through lining / wall of alveolus and capillary for 1 mark Accept: squamous epithelial cells for 'epithelium' Neutral: alveolar endothelium Neutral: references to diffusion **Q** Correct use of terminology; 2 (Thicker alveolar wall) - no mark (ii) Neutral: less diffusion (So) Longer diffusion pathway / slower diffusion;

Neutral: references to surface area

(b) (i) (In alveolus)

Need the idea of air moving and oxygen concentration

Brings in air containing a high(er) oxygen concentration;

Neutral: reference to carbon dioxide concentration

Removes air with a low(er) oxygen concentration;

2

(ii) Circulation of blood / moving blood;

Neutral: blood Neutral: short diffusion pathway

1

(c) Long time between decrease in mining and increase in cases;

Graph shows fluctuations;

Correlation does not prove causation / there may be other causes of miner's lung;

Improved diagnosis methods;

Do not know number of cases / baseline before 1990;

Not all cases reported / not all individuals with miner's lung visit a doctor;

Accept: correct use of figures from graph for the first marking point: e.g. cases do not increase until after 2000 / 2001-2004 / 10 years later.

2 max

[8] (a) Filaments / lamellae provide <u>large surface area;</u>

Thin / flattened <u>epithelium</u> / one / two cell layers so short <u>diffusion</u> pathway (between water and blood);

Countercurrent / blood flow maintains concentration / diffusion gradient;

Q Do not credit thin cell walls / membranes

2 max

(b) (i) Large / wide range of values (so can fit on graph);

1

(ii) Decrease in uptake with increase in mass / negative correlation;

1

(iii) Enables comparison;

As animals differ in size / mass:

2