Mark schemes

(a) (i) Changes shape of antitrypsin;

Reference to hydrogen/ionic/disulfide bonds;
No longer attaches to/interacts/ reacts with trypsin;
Accept protease
2
(ii) Higher the concentration of hydrogen peroxide, more amino acids/ proteins affected;
More antitrypsin molecules change shape;
2
(b) (Longterm smokers) inhale a lot of hydrogen peroxide;

Smokers have more active enzyme that damages lung tissue;
Reducing gas exchange surface;

2 max

[6] (a) Active transport against / facilitated down with concentration gradient;

Accept answers in terms of water potentials
Active transport uses ATP/energy, /facilitated doesn't;
Reject along/across gradient
Active uses carrier (proteins), / facilitated (often) uses channel (proteins);

$$
2 \max
$$

(b) Lipid/fatty acid part of membrane is non-polar/hydrophobic;

Accept lipid/fatty acid bilayer
Oxygen and carbon dioxide small/ non-polar (molecules);
Oxygen/carbon dioxide can diffuse through/dissolve in/ get between molecules in this layer;

Down a concentration gradient;
2 max
(c) Brings more oxygen/removes carbon dioxide;

Maintains diffusion/concentration gradients;
Between alveoli and blood/capillaries;
Reject references to surface area
2 max
(a) (explanation must be linked to structures to gain second mark for each linked pair)

filaments / lamellae ;	large SA;
gill plates or secondary lamellae;	
large number of capillaries;	to remove oxygen / to maintain a gradient;
thin epithelium;	short diffusion pathway;
pressure changes;	to bring in more water / to maintain gradient;
countercurrent flow (or description);	exchange / diffusion along whole length / concentration gradient maintained / equilibrium not achieved / blood always meets water with higher oxygen concentration;

(b) (i) requires $20 \mathrm{~cm}^{3}$ of oxygen / extracts $7.2 \mathrm{~cm}^{3}$ of oxygen / reject if referring to volume of water $\frac{20}{7.2}$;
2.7 / $2.8\left(\mathrm{dm}^{3} \mathrm{~h}^{-1}\right)$;
(correct answer award 2 marks)
(c) (for each pair second point must be linked to first) to provide same amount of oxygen; need to have more water flowing over gills;
OR
metabolic rate / respiration increases (with increase in temperature); so more oxygen required;

2 max
(a) 1. mouth opens, operculum / opercular valve shuts;
2. floor of mouth lowered;
3. water enters due to decreased pressure / increased volume;
4. mouth closes, operculum / opercular valve opens;
5. floor raised results in increased pressure / decreased volume;
6. high / increased pressure forces / pushes water over gills;
(b) 1. alveoli provide a large surface area;
2. walls of alveoli thin to provide a short diffusion pathway; 3. walls of capillary thin / close to alveoli provides a short diffusion pathway;
4. walls (of capillaries / alveoli) have flattened cells;
5. cell membrane permeable to gases;
6. many blood capillaries provide a large surface area;
7. intercostal / chest muscles / diaphragm muscles / to ventilate lungs / maintain a diffusion / concentration gradient;
8. wide trachea / branching of bronchi / bronchioles for efficient flow of air;
9. cartilage rings keep airways open;
(reject moist and thin membranes)
6 max
[10] (a) exchange / diffusion across body surface / skin;
5 short diffusion pathway / distance / large SA:V ratio;
(b) large numbers of lamellae so large SA;lamellae thin so short (diffusion) pathway to blood / capillaries; high rate of oxygen uptake for respiration / energy release;
(accept more oxygen)
[5] (a) contraction of (diaphragm) muscles flattens diaphragm;
contraction of intercostal muscles raises ribcage;
increase in volume decreases pressure;
(b) (i) tidal volume increases steeply, then increase slows down after 10 to $15 \mathrm{~km} \mathrm{~h}^{-1}$;
(ii) breathing rate increases slowly then steeply after 10 to $15 \mathrm{~km} \mathrm{~h}^{-1}$; (max 1 if no reference to speed where change occurs in either (i) or (ii))
(c) $20 \times 2.75=55 \mathrm{dm}^{2}$;
(award 1 mark for correct method i.e. tidal volume \times rate);
(i) (waxy so) impermeable to water / waterproof / stops water

7 passing through;
(ii) reference to hairs / position of stomata (sunken stomata / stomata in pits)

LINKED to reduced air movement / trap layer of air / trap water vapour (reject water) / maintains humidity;
reduces diffusion gradient / concentration gradient of water / water potential gradient;
$O R$
stoma can close;
reduces area for evaporation or transpiration;
[3] (a) (i) one feature;
then linked Explanation;
(many) filaments / lamellae / secondary lamellae; so large surface area;
large number of capillaries; (NOT "good blood supply") maintains a diffusion gradient / removes oxygen;
thin epithelium / lamellae wall;
short diffusion pathway;
(b) less energy needed / continuous flow of water or O_{2};
] (a) (diffusion) gradient will be maintained all the way along the gill / the amount of oxygen in
the water is always higher than in the blood / the numbers in the water are always higher than in the blood;
more oxygen will diffuse into the blood;
(b) 100 cycles per minute;
(principle of 60 / x or 0.6 seen gains one mark)
(i) Because there are big differences;
any correct named example e.g. lung cancer / bronchitis much lower in women than in men;
(ii) easier to compare if sample size effectively the same; different numbers of people in each group;

2
[4] (a) (gills have) lamellae on filaments;

11 lots of both;
2
(b) (i) all 3 go up;

Accept converse
(ii) more oxygen can be supplied; for more respiration;

Accept answer relating to CO_{2}
[5] (a) Immediate / rapid increase, steady rise and plateau clearly identified;
12
Ignore references to rest period if clearly identified as such
(b) Find value of pulmonary ventilation from graph / 26-28;

Divide by breathing rate / 20;
(c) Air is from nose / trachea / bronchi / not been in alveoli / dead space;

Gas exchange / diffusion only in alveoli / not in these structures;
[5] (a) Epithelium of alveolus, capillary wall / epithelium / endothelium, plasma;

13

(b) Cell wall;

Capsule;
Flagellum;
Mesosomes;
Plasmid;
Genetic material / DNA / nucleoid;
Ribosomes;
Accept references to size only if some idea of range is given
$\max 2$
(c) Large (surface) area;For diffusion;

or

Short distance to centre of cell / to all haemoglobin;
For diffusion;
(d) (i) Correct answer of approximately $7800 / 8000=2$ marks Incorrect answer but clearly derived by dividing diameter of cell A by 7 = 1 mark
(ii) Idea of cut through maximum diameter / middle;
(a) ;
$=1.25$ to 1.5 ;
allow 1 mark if correct working shown
$\max 2$
(b)

Maintains concentration gradient (over whole length of gill) / diffusion can occur over whole gill;
More oxygen enters blood (/ more CO_{2} leaves);
More (aerobic) respiration / more energy release in muscle / for swimming; 'more' needed ONCE only
[5] (a) Diaphragm (muscle) contracts;
15
Flattens / Increases volume of chest;
Reduced pressure allows air to enter;
(b) Allows comparison;

As organs differ in size / as larger organs will need more blood;
(c) 2 marks for 40.91 / 40.9 / 41

1 mark for 59.09 / 59.1 / 59
(d) (i) Some oxygen still in lungs (which will enter the blood)/removal of carbon dioxide (from blood);
(ii) More blood available for other organs;

Supplying oxygen / glucose / removing carbon dioxide;
OR

Diaphragm muscles not contracting (as not breathing);
Will not require (as much) oxygen / glucose;
[10]
(a) Muscles (associated with breathing) relax;

16

(b) Produces lower pressure (and air moves in down pressure gradient);
(accept inspiration and expiration as equivalent to A and B)
(ii) carbon dioxide diffuses / passes / into alveoli / from blood; as higher concentration in blood / low concentration in alveolus;
(first mark for site and direction, second for cause)
(b) curve increases; (reject if decreases) then levels
out;
(c) (i) contract;ribs move upwards / out;
increasing volume / decreasing pressure in chest / thorax / lungs;
(ii) intercostal muscles relax;
(if you can ignore ref to internal contracting, do so)
[9] (a) increasing carbon dioxide concentration / partial pressure;
18
(decrease in oxygen negates)
(b) (oxygen is used in) respiration therefore diffuses (from
tracheae) to tissues;oxygen unable to enter organism;
(c) spiracles not open all the time;therefore there is less water loss
(by diffusion through spiracles);
[5] (a) (Small alveoli with) large surface area;
19
For diffusion;
(b) (i) Epithelium / epithelial / squamous / pavement cells;Reject endothelium.
(ii) $0.11 \mu \mathrm{~m}$;
(c) (i) Less oxygen / more carbon dioxide / more water vapour; Two differences required, but only one mark for this part of the question.
(ii) Gas exchange takes place in alveoli / does not take placein trachea;
(d) (i) Pulmonary artery;
(ii) Concentrations reach equilibrium / become equal;

Diffusion occurs when there is a concentration gradient (so some will remain in blood);
OR
Lung cells / vessel cells respire;
Add / produce carbon dioxide;
[9] (a) 235-240;;
20
(one mark for an answer between 200-300
based on 2-3 stomata in $0.01 \mathrm{~mm}^{2}$
Alternatively, one mark for calculating the area of the
rectangle correctly as $0.016-0.017 \mathrm{~mm}^{2}$)
(b) grows in arid / dry conditions;
less surface area;
(rate of) transpiration / water loss would be reduced;

21 (a) (i) high / higher CO 2 concentration / lack of oxygen;
(ii) CO_{2} asphyxiates / is toxic; lack of oxygen for (aerobic) respiration;
OR
lack of energy / ATP (for pumping movements); reduced muscle function / muscle fatigue

2 max
(b) removal of (excess) CO_{2} / oxygen to break down lactate / to repay oxygen debt / to enable aerobic respiration;
[4] (a) up and out;

22

1
(c) liver moves back;increases volume of lungs; pressure lower (in lungs than outside);
(d) maximum of three marks for description, points 1 to 4

1 inhaled air contains more oxygen than exhaled air;
2 inhaled air contains less carbon dioxide than exhaled air;
3 inhaled air contains less water (vapour);
4 relative amount / percentage of nitrogen also changes;
5 respiration results in lower blood oxygen / higher blood carbon dioxide;
6 oxygen enters blood / carbon dioxide leaves blood in alveoli;
7 by diffusion;
8 water vapour diffuses from moist surface;
6 max
(a) 1. Large surface area provided by lamellae / filaments increases diffusion / makes

23 diffusion efficient;;

> Q Candidates are required to refer to lamellae or filaments. Do not penalise for confusion between two
2. Thin epithelium / distance between water and blood;
3. Water and blood flow in opposite directions / countercurrent;
4. (Point 4) maintains concentration gradient (along gill) / equilibrium not reached /as water always next to blood with lower concentration of oxygen;
5. Circulation replaces blood saturated with oxygen;
6. Ventilation replaces water (as oxygen removed);
(b) Mixing of air and water (at surface);

Air has higher concentration of oxygen than water;
Diffusion into water;
Plants / seaweeds near surface / in light;
Produce oxygen by photosynthesis;
2 max
(c) Not much oxygen near sea bed;

Toadfish haemoglobin (nearly) saturated / loads readily at / has higher affinity for oxygen at low partial pressure (of oxygen);
(d) The chimpanzee and the bonobo are more closely related (than to the gorilla);

They have identical amino acids / one of the amino acids is different in the gorilla;
[12] (a) Phagocytes engulf / ingest pathogens / microorganisms / bacteria / viruses;

Phagocytes destroy pathogens / microorganisms / bacteria / viruses;
Lung diseases are caused by pathogens / microorganisms / bacteria / viruses;
Q Allow description of process of engulfing
2 max
(b) (i) Alveoli / lungs will not inflate / deflate fully / reduced lung capacity;

Breathing out particularly affected / no longer passive;
(ii) Alveolar walls thicken;

Longer diffusion pathway;
Scarred / fibrous tissue;
Reduces surface area (for gaseous exchange);
(c) (i) Cancer develops 20-30 years after exposure (to asbestos);
(ii) Smoking / air pollution / specified industrial source;
[10] (a) (i) Many people do not go to the doctor;

25

(ii) 36000;

No marks awarded for working here as calculation is very straightforward

1
(b) Same sugars / antigens on bacteria / nerve cells;

Do not accept references to same shape as equivalent to complementary.

Bind with antibody / form antigen-antibody complex;
Reject react
Have complementary shape / fit binding site;
Reject active site
(c) Diaphragm will not move down / flatten / contract;

Ignore references to breathing out
Thoracic cavity / lung volume not increased so cannot breathe in;
[7] (a) (i) Through alveolar epithelium;

Through capillary epithelium / endothelium;
Accept: Through lining / wall of alveolus and capillary for 1 mark
Accept: squamous epithelial cells for 'epithelium'
Neutral: alveolar endothelium
Neutral: references to diffusion
Q Correct use of terminology;
(ii) (Thicker alveolar wall) - no mark

Neutral: less diffusion
(So) Longer diffusion pathway / slower diffusion;
Neutral: references to surface area
(b) (i) (In alveolus)

Need the idea of air moving and oxygen concentration
Brings in air containing a high(er) oxygen concentration;
Neutral: reference to carbon dioxide concentration
Removes air with a low(er) oxygen concentration;
(ii) Circulation of blood / moving blood;

Neutral: blood Neutral: short diffusion pathway
(c) Long time between decrease in mining and increase in cases;

Graph shows fluctuations;
Correlation does not prove causation / there may be other causes of miner's lung;
Improved diagnosis methods;
Do not know number of cases / baseline before 1990;
Not all cases reported / not all individuals with miner's lung visit a doctor;
Accept: correct use of figures from graph for the first marking point: e.g. cases do not increase until after 2000 / 2001-2004 / 10 years later.
[8] (a) Filaments / lamellae provide large surface area;

Thin / flattened epithelium / one / two cell layers so short diffusion pathway (between water and blood);

Countercurrent / blood flow maintains concentration / diffusion gradient;
Q Do not credit thin cell walls / membranes
(b) (i) Large / wide range of values (so can fit on graph);
(iii) Enables comparison;

As animals differ in size / mass;
(ii) Decrease in uptake with increase in mass / negative correlation;

