Mark schemes

(a) 1. (Overall) outward pressure of 3.2 kPa ;
2. Forces small molecules out of capillary.
(b) Loss of water / loss of fluid / friction (against capillary lining).
(c) 1. High blood pressure = high hydrostatic pressure;
2. Increases outward pressure from (arterial) end of capillary / reduces inwardpressure at (venule) end of capillary;
3. (So) more tissue fluid formed / less tissue fluid is reabsorbed. Allow lymph system not able to drain tissues fast enough
(d) 1. Water has left the capillary;
2. Proteins (in blood) too large to leave capillary;
3. Increasing / giving higher concentration of blood proteins (and thus wp).
[9] (a) 1. Contraction of internal intercostal muscles;
2. Relaxation of diaphragm muscles / of external intercostal muscles; 3. Causes decrease in volume of chest / thoracic cavity; 4.
Air pushed down pressure gradient.
(b) $19(\%)$;
(c) 1. Muscle walls of bronchi / bronchioles contract;
2. Walls of bronchi / bronchioles secrete more mucus;
3. Diameter of airways reduced;
4. (Therefore) flow of air reduced.
] (a) 1. Water potential becomes lower / becomes more negative (as sugar enters phloem);
2. Water enters phloem by osmosis;
3. Increased volume (of water) causes increased pressure.
(b) 1. Rate of photosynthesis related to rate of sucrose production;2. Rate of translocation higher when sucrose concentration is higher.
(c) 1. Rate of translocation does not fall to zero / translocation still occurs after 120 minutes;
2. But sucrose no longer able to enter cytoplasm of phloem cells.
(a) 1. Trachea and bronchi and bronchioles;
2. Down pressure gradient;
3. Down diffusion gradient;
4. Across alveolar epithelium. Capillary wall neutral
5. Across capillary endothelium / epithelium.

4 max

(b) (About) 80.0\%.
(c) 1. (Group B because) breathe out as quickly as healthy / have similar FEV to group A;
2. So bronchioles not affected;
3. FVC reduced / total volume breathed out reduced.

Allow this marking point for group C

Reject: facilitated diffusion.
(b) 1. Thin/small so short diffusion pathway;

Reject: thin membrane/wall/cells.
2. Flat/long/small/thin so large surface area to volume ratio/surface area : volume; Accept: small volume to surface area ratio.
(c) 1. High/50\% saturation (with oxygen) below $\left(\mathrm{pO}_{2}\right.$ of) 0.2 kPa ;

Accept: fully saturated or above 50% saturation below 0.2 kPa .
Accept: any number between 0.08 and 0.2 kPa
2. (Oxygen) for respiration;
(d) 1. Water potential higher in worm OR
Lower water potential in seawater;
Accept: correct reference to water potential gradient if direction of water movement is given.
Accept: ψ for water potential.
2. Water leaves by osmosis (and worm dies); Reject: worm/cells burst.
(a) 1. Lower affinity for oxygen / releases more oxygen / oxygen is released quicker /
oxygen dissociates / unloads more readily;
Q Neutral: the organism / body has a lower affinity for oxygen / releases more oxygen
2. (To) muscles / tissues / cells
3. (For) high / rapid respiration;
\boldsymbol{Q} Reject: 'produces more energy' on its own
Neutral: reference to partial pressure
Accept: (for) respiration to produce more energy in the form of ATP /
release more energy
(b) (i) 1. Small SA:VOL;

Neutral: small limbs / small ears / extremities
Neutral: small SA
Accept: large VOL:SA
Neutral: reference to fat / blubber / insulation
2. (So) reduces heat loss / (more) heat retained;

Note: MP2 is independent of MP1
(ii) 1. Brain is the same, others fall;

Note: 1. might not be given in the same sentence
Assume that 'other organs fall' = all three organ categories fall
Accept: 'blood flow is reduced to all organs except for the brain'
2. Brain controls other organs / remains active / needs constant supply ofoxygen;

Accept: 'seal would die' = brain remains active
3. Lungs not used / are used less / seal is not breathing / heart rate decreases /heart pumps less / blood diverted to muscles;
Reject: seal is not respiring
(a) 1. Water and blood flow in opposite directions;

Accept: diagram if clearly annotated
2. Maintains concentration / diffusion gradient / equilibrium not reached / wateralways next to blood with a lower concentration of oxygen;

Must have the idea of 'maintaining' or 'always' in reference to concentration / diffusion gradient
Accept: constant concentration / diffusion gradient
3. Along whole / length of gill / lamellae;

Accept: gill plate / gill filament
(b) 1. (Thicker lamellae so) greater / longer diffusion distance / pathway; Q Neutral: 'thicker' diffusion pathway
2. (Lamellae fuse so) reduced surface area;

Accept: reduced SA:VOL
(c) (i) Correct answer of 5.1 or $5.14(2857)\left(\mathrm{dm}^{3}\right)=2$ marks;;

Allow 1 mark max for an answer of $\mathbf{5}$ if the correct answer of 5.1 or 5.14(2857) is not shown

One mark for incorrect answers that show $\mathbf{3 6}$ or $\mathbf{0 . 4 \times 9 0}$ or $90 \div 7$;
(ii) 1. Increased metabolism / respiration / enzyme activity; Accept: enzymes work more efficiently
2. Less oxygen (dissolved in water);

Neutral: references to increased kinetic energy (of water molecules)
1 max
[8] (a) (i) (Simple) diffusion;

Reject facilitated diffusion
Accept lipid diffusion
(ii) 1. Thin walls / cells;

1. 'Short diffusion pathway' alone is an explanation not a description
2. Accept squamous epithelia / one cell thick
3. (Total) surface area is large;
4. Ignore references to 'volume ratio'
(b) 1. Loss of elasticity / elastic tissue / increase in scar tissue;
5. Accept elastin
6. Less recoil;

FOR

1. (If the husband smokes) there's a greater risk of dying from lung cancer / emphysema/ cervical cancer;
2. The more the husband smokes, the greater the risk of dying from lung cancer /emphysema;
3. Suitable use of figures from the table to illustrate answer;

AGAINST

4. Little difference in risk of dying of stomach / heart disease;
5. Other factor (than husband smoking) / named factor might cause death;
6. Only one sample / further studies needed;

4 max
[4] (a) (i) (We should maintain biodiversity to)

Prevent extinction / loss of populations / reduction in populations / loss of habitats / save organisms for future generations (idea of); Neutral: references to 'playing God' / animal rights
(ii) A suitable example of how some species may be important financially e.g.

1. medical / pharmaceutical uses;
2. commercial products / example given;
3. tourism;
4. agriculture;
5. saving local forest communities;

1 max
(b) 1. Fewer plant species / decrease in plant diversity;

Accept: converse arguments for islands with a high percentage of forest remaining 1. Neutral: fewer plants
2. Fewer habitats nesting sites / niches / food sources / varieties / less protectionfrom predators / hunters / environment;
2. Neutral: fewer homes
2. Neutral: less food
(c) 1. Number of (individuals / birds of) each species;

1. Neutral: number of species
2. Total number of individuals / birds of all species;
3. Accept: 'total number of birds' as given context for 'all species' in the investigation
(d) 1. (Larger birds have) a low(er) SA:VOL;

Neutral: reference to fat / feathers
2. (So) less heat loss / more heat retained;

MP2 is independent of MP1
[8] (a) Hydrolysis (reaction);

Accept phonetic spelling
1
(b) 1. Too big / wrong shape;

Wrong charge - neutral
Accept insoluble
2. To fit / bind / pass through (membrane / into cell / through carrier / channelprotein);
3. Carrier / channel protein;

Accept carrier / channel protein not present
(c) Foreign / (act as) antigen / non-self;

Reject foreign cells
(d) 1. Dose to be given;

Accept: interaction with other drugs
2. No (serious) side effects;
3. How effective;
4. Cost of drug;

2 max
] (a) 1. Phagocyte attracted to bacteria by chemicals / recognise antigens on bacteria as
foreign;
2. Engulf / ingest bacteria;
3. Bacteria in vacuole / vesicle;
4. Lysosome fuses with / empties enzymes into vacuole;
5. Bacteria digested / hydrolysed;

1. Accept names chemical e.g. toxin
2. Allow description of engulfing
3. Accept: bacteria in phagosome
4. Neutral: Break down
5. Accept digestive enzymes destroy bacteria
6. Do not accept "destroy bacteria" as it is in question stem
(b) 1. Microvilli provide a large / increased surface area;
7. Many mitochondria produce ATP / release or provide energy (for activetransport);
8. Carrier proteins for active transport;
9. Channel / carrier proteins for facilitated diffusion;
10. Co-transport of sodium (ions) and glucose or symport / carrier protein for sodium (ions) and glucose;
11. Membrane-bound enzymes digest disaccharides / produce glucose;
12. Reject villi on epithelial cells
13. Accept brush border
14. Accept large SA:vol ratio
15. Need idea of "lots"
16. Reject: energy produced
17. Accept $\mathrm{Na}^{+} K^{+}$pump
18. Neutral: Channel proteins
19. Accept named example

6
[10] (a) (i) Diffusion;

Ignore references to structures, membrane components etc
Allow simple diffusion
Reject facilitated diffusion
(ii) 1. (Thin / flat body) so short distance for diffusion / short diffusion pathway; Ignore references to membrane, wall, body surface
2. (Thin / flat body so) large surface area to volume ratio; 'It' refers to flatworm's body
(b) (i) A group of tissues;

Ignore references to function Group = more than one
(ii) 1. (Carbon dioxide enters) via stomata;

Reject stroma
2. (Stomata opened by) guard cells;
3. Diffuses through air spaces;

Allow concentration gradient. Reject along gradient unless direction made clear
4. Down diffusion gradient;

Starch (store);
Chloroplast;
Accept: phonetic spelling
2 max
(b) Insoluble;

Reduces / 'stops' water entry / osmosis / does not affect water potential / is osmotically inactive;

Accept: description for first point e.g. 'does not dissolve'.
(c) Light sensitive eyespot / eyespot detects light;

Flagellum enables movement towards light;
Chloroplast / chlorophyll absorbs light / for photosynthesis;
Do not penalise references to 'many chloroplasts'.
] (a) 1. (Simple / facilitated) diffusion from high to low concentration / down concentration
gradient;
Q Do not allow across / along / with concentration gradient
2. Small / non-polar / lipid-soluble molecules pass via phospholipids / bilayer;

Reject: named molecule passing through membrane by an incorrect route
Accept: diagrams if annotated

OR

Large / polar / water-soluble molecules go through proteins;
3. Water moves by osmosis / from high water potential to low water potential / from less to more negative water potential;
4. Active transport is movement from low to high concentration / against concentration gradient;

Only penalise once if active transport is not named
e.g. 'movement against the concentration gradient involves proteins and requires ATP' $=2$ marks
5. Active transport / facilitated diffusion involves proteins / carriers;

Accept: facilitated diffusion involves channels
Reject: active transport involves channels
6. Active transport requires energy / ATP;
7. Ref. to Na^{+}/ glucose co-transport;

Credit ref. to endo / exocytosis as an alternative
(b) 1. Many alveoli / alveoli walls folded provide a large surface area;

Neutral: alveoli provide a large surface area
2. Many capillaries provide a large surface area;
3. (So) fast diffusion;

Neutral: greater / better diffusion
Neutral: fast gas exchange
Allow 'fast diffusion' only once
4. Alveoli or capillary walls / epithelium / lining are thin / short distance betweenalveoli and blood;

Reject: thin membranes / cell walls
Accept: one cell thick for 'thin'
5. Flattened / squamous epithelium;Accept: endothelial
6. (So) short diffusion distance / pathway;
7. (So) fast diffusion;
8. Ventilation / circulation;

Accept: descriptions for ventilation / circulation
9. Maintains a diffusion / concentration gradient;
10. (So) fast diffusion;

Do not double penalise if description lacks detail
e.g. thin membranes so a short diffusion distance $=1$ mark
(a) Measure with eyepiece graticule / scale;

Calibrate with stage micrometer / scale on slide / object of known size;
Repeats and calculate the mean;
OR
Use a ruler to estimate the field diameter under microscope;
How many droplets go across the field;
Repeats and calculate mean;
Accept references to radius
(b) (i) Two mark for correct answer of 4:1;; One mark for incorrect answer but working shows that candidate has clearly attempted to compare values of $r^{2} / 6^{2}$ and $3^{2} / 36$ and 9 ;

Idea of comparing ratios
A ratio of 1:4 should gain 1 mark
(ii) Small droplets have a larger surface area to volume ratio;

More surface for lipase (to act), leading to faster digestion of triglycerides;
Fatty acids are produced more quickly so pH will drop more quickly in curve Y / with bile salts / less fatty acids in curve Z / without bile salts so pH drop more slowly;

17 (a) Loading / uptake / association of oxygen at high p.O2;

In lungs (haemoglobin) is (almost) fully saturated / in lungs haemoglobin has a high affinity for oxygen;

Unloads / releases / dissociates oxygen at low p. O_{2};
Unloading linked to higher carbon dioxide concentration;
Allow converse for second marking point in tissues i.e. haemoglobin has low affinity / releases most of its oxygen.
Mark for haemoglobin having high affinity for oxygen must be 'in lungs'.
(b) (i) Larger the mammal the more to the left / steeper / 'higher' is the curve / the higher the affinity for oxygen; Allow converse.

Ignore references to Bohr shift
(ii) Smaller mammal has greater surface area to volume ratio;

Smaller mammal / larger SA:Vol ratio more heat lost (per unit body mass);
Allow converse explanation for larger mammals or lower surface area to volume ratio.

Smaller mammal / larger SA:Vol ratio has greater rate of respiration / metabolism;

Allow suitable named mammal as alternative to smaller or larger mammal.

Oxygen required for respiration so (haemoglobin) releases more oxygen / oxygen released more readily / haemoglobin has lower affinity;
[8] (a) (i) Through alveolar epithelium;
18
Through capillary epithelium / endothelium;
Accept: Through lining / wall of alveolus and capillary for 1 mark
Accept: squamous epithelial cells for 'epithelium'
Neutral: alveolar endothelium
Neutral: references to diffusion
Q Correct use of terminology;
(ii) (Thicker alveolar wall) - no mark

Neutral: less diffusion
(So) Longer diffusion pathway / slower diffusion;
Neutral: references to surface area
(b) (i) (In alveolus)

Need the idea of air moving and oxygen concentration
Brings in air containing a high(er) oxygen concentration;
Neutral: reference to carbon dioxide concentration
Removes air with a low(er) oxygen concentration;
(ii) Circulation of blood / moving blood;

Neutral: blood Neutral: short diffusion pathway
(c) Long time between decrease in mining and increase in cases;

Graph shows fluctuations;
Correlation does not prove causation / there may be other causes of miner's lung;
Improved diagnosis methods;
Do not know number of cases / baseline before 1990;
Not all cases reported / not all individuals with miner's lung visit a doctor;

Accept: correct use of figures from graph for the first marking point: e.g. cases do not increase until after 2000 / 2001-2004 / 10 years later.

2 max
[8] (a) (i) Mitochondrion;
19
Neutral: cristae
(ii) (Site of aerobic) respiration / ATP production / energy release;

Q Reject: anaerobic respiration
Q Reject: energy produced
Active transport / transport against the concentration gradient;
Accept: energy produced in the form of ATP
(b) $89-91$ gains 2 marks;

Correct answer gains 2 marks outright
Principle of:
correct measured length
magnification gains 1 mark;
89-91 (mm) / 1000 or 8.9-9.1 (cm) / 1000 gains 1 mark
(c) Suitable explanation given e.g.

Accept: converse arguments
Reduced surface area; (So) less absorption;
Neutral: structure Z incorrectly named
(Membrane-bound) enzymes less effective;
(So) proteins / polypeptides not digested;
Reduced surface area for absorption gains 2 marks
Cell membranes damaged;
(So) Fewer / less effective carrier / channel proteins;
Accept: references to diffusion and active transport for 'absorption'
Carrier / channel proteins damaged;
(So) less absorption;
Reject: active transport if linked to channel proteins

