铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.3 Trigonometry

3.3.1 Pythagoras \& Right-Angled Trigonome try

Pythagoras

What is the Pythagorean theorem?

- Pythagoras' theorem is a formula that works for right -angled triangles only
- It states that for any right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the two shorter sides
- The hypotenuse is the longest side in a right-angled triangle
- It will always be opposite the right angle
- If we label the hypo tenuse c, and label the other two sides a and b, then Pythagoras' theorem tells us that

$$
a^{2}+b^{2}=c^{2}
$$

- The formula for Pythagoras' theorem is assumed priorknowledge and is not in the formula booklet
- You will need to rememberit

How can we use Pythagoras' theorem?

- If youknow two sides of any right-angled triangle you can use Pythagoras' theorem to find the length of the third side
- Substitute the values you have into the formula and either solve or rearrange
- To find the length of the hypotenuse youcanuse:

$$
c=\sqrt{a^{2}+b^{2}}
$$

- To find the length of one of the other sides you can use:

$$
a=\sqrt{c^{2}-b^{2}} \text { or } b=\sqrt{c^{2}-a^{2}}
$$

- F Note that when find ing the hypotenuse you should add inside the square root and when finding one of the othersides you should subtract inside the square root
- Always check your answer carefully to make sure that the hypotenuse is the longest side
- Note that Pythagoras' theorem questions will rarely be standalone questions and will often be 'hidden' in other geometry questions

What is the converse of the Pythagorean theorem?

- The converse of the Pythagorean theorem states that if $a^{2}+b^{2}=c^{2}$ is true then the triangle must be a right-angled triangle
- This is a very useful way of determining whether a triangle is right-angled
- If a diagramina questiondoes not clearly show that something is right-angled, you mayneed to use Pythagoras' theorem to check

(9) Exam Tip

- Pythagoras' theorempops up in lots of examquestions so bearit in mind wheneveryou see a right-angled triangle in an exam question!

Worked example

$A B C D E F$ is a chocolate bar in the shape of a triangular prism. The end of the chocolate bar is an is os cells triangle where $A C=3 \mathrm{~cm}$ and $A B=B C=5 \mathrm{~cm}$. M is the midpoint of $A C$. This information is shown in the diagram below.

Calculate the length BM.
Sketch the triangle ABM:

By the Pythagorean Theorem:

$$
\begin{aligned}
& \begin{array}{c}
B M^{2}
\end{array}=\sqrt{A B^{2}-A M^{2}} \\
& \text { shorter } \\
& \text { side } \text { hypotenuse } \\
&=\sqrt{5^{2}-1.5^{2}} \\
&=\sqrt{22.75}
\end{aligned}
$$

$$
B M=4.77 \mathrm{~cm}(3 \mathrm{sf})
$$

Page 2 of 25
For more help visit our website www.exampaperspractice.co.uk

Right-Angled Trigonometry

What is Trigonometry?

- Trigo no metry is the mathematics of angles in triangles
- It looks at the relationship between side lengths and angles of triangles
- It comes from the Greek words trigonon meaning 'triangle' and metronmeaning 'measure'

What are Sin, Cos and Tan?

- The three trigonometric functions Sine, Cosine and Tangent come from ratios of side lengths in right-angled triangles
- To see how the ratios work you must first label the sides of a right-angled triangle in relation to a chosen angle
- The hypotenuse, \boldsymbol{H}, is the longest side in a right-angled triangle
- It will always be opposite the right angle
- If we label one of the other angles θ, the side opposite θ will be labelled opposite, \boldsymbol{O}, and the side next to θ will be labelled adjacent, \boldsymbol{A}
- The functions Sine, Cosine and Tangent are the ratios of the lengths of these sides as follows

$$
\begin{aligned}
& \operatorname{Sin} \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{O}{H} \\
& \operatorname{Cos} \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{\mathrm{A}}{\mathrm{H}} \\
& \operatorname{Tan} \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\mathrm{O}}{\mathrm{~A}}
\end{aligned}
$$

- These are not in the formula book, you must remember them
- The mnemonic SOHCAHTOA is often used as a way of remembering which ratio is which
- Sin is Opposite overHypotenuse
- Cos is Adjacent over Hypotenuse
- Tan is Opposite overAdjacent

Exam Papers Practice

How can we use SOHCAHTOA to find missing lengths?

- If you know the length of one of the sides of any right-angled triangle and one of the angles you can use SOHCAHTOA to find the length of the other sides
- Always start by labelling the sides of the triangle with H, O and A
- Choose the correct ratio by looking only at the values that you have and that you want
- For example if you know the angle and the side opposite it (O) and you want to find the hypotenuse (H) you should use the sine ratio
- Substitute the values into the ratio
- Useyour calculator to find the solution

How can we use SOHCAHTOA to find missing angles?

- If you know two sides of any right-angled triangle you can use SOHCAHTOA to find the size of one of the angles
- Missing angles are found using the inverse functions:

$$
\theta=\operatorname{Sin}^{-1} \frac{O}{H}, \theta=\operatorname{Cos}^{-1} \frac{\mathrm{~A}}{\mathrm{H}}, \theta=\operatorname{Tan}^{-1} \frac{\mathrm{O}}{\mathrm{~A}}
$$

- Afterchoosing the correct ratio and substituting the values use the inverse trigo nometric functions onyour calculator to find the correct answer

- Exam Tip

- Youneed to remember the sides involved in the different trigratios as they are not given to you in the exam

Worked example

Find the values of \boldsymbol{X} and \boldsymbol{y} in the following diagram. Give your answers to 3 significant figures.

Start by labelling the sides of the triangle:
SOHCAHTOA

12.3 cm $\mathrm{l}^{60^{\circ}}$ We know H and we | want to find A so |
| :--- |
| we need to use |
| $\cos \theta=\frac{A}{H}$ |

\square NC

$$
\cos 60^{\circ}=\frac{x}{12 \cdot 3}
$$

Copyright

$$
x=12.3 \cos 60^{\circ}
$$

$$
\begin{aligned}
& \text { SOHCAHTOA } \\
& \underbrace{\operatorname{Tan} y^{\circ}}_{\operatorname{Tan} y^{\circ}}=\frac{0}{A}=\frac{6.15}{8.4} \\
& y^{\circ}=\operatorname{Tan}^{-1}\left(\frac{6.15}{8.4}\right)
\end{aligned}
$$

$$
y^{\circ}=36.2^{\circ} \quad(3 \text { s.f. })
$$

3D Problems

How does Pythagoras workin 3D?

- 3D shapes can often be broken down into several 2D shapes
- With Pythagoras'Theoremyou will be specificallylooking for right-angled triangles
- The right-angled triangles you need will have two known sides and one unknown side
- Lookforperpendicularlines to helpyou spot right-angled triangles
- There is a 3Dversion of the Pythagorean theorem formula:

$$
d^{2}=x^{2}+y^{2}+z^{2}
$$

- However it is usually easier to see a problem bybreaking it downinto two ormore 2D problems

How does SOHCAHTOA work in 3D?

- Again look for a combination of right-angled triangles that would lead to the missing angle or side
- The angle you are working with can be awkward in 3D
- The angle between a line and a plane is not always obvious
- If unsure put a point on the line and draw a new line to the plane
- This should create a right-angled triangle

(-) Exam Tip

- Annotate diagrams that are given to you with values that you have calculated
- It can be us eful to make additional sketches of parts of any diagrams that are given to you, especially if there are multiple lengths/angles that you are asked to find
- If you are not given a diagram, sketch a nice, big, clear one!

Worked example

A pencil is being put into a cuboid shaped box which has dimensions 3 cm by 4 cm by 6 cm . Find:
a) the length of the longest pencil that could fit inside the box,

Draw a diagram:

To find $A f$ we must first find $B f$:

The longest pencil
could fit on any
of the diagonals. e.g. AF.

7.81 cm ($3 \mathrm{sf}$.)

b) the angle that the pencil would make with the top of the box.

Exam Papers Practice

3.3.2 Non Right -Angle d Trigonometry

Sine Rule

What is the sine rule?

- The sine rule allows us to find mis sing side lengths or angles in non-right -angled triangles
- It states that for any triangle with angles A, B and C

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

- Where
- ais the side opposite angle A
- b is the side opposite angle B
- c is the side opposite angle C
- This formula is in the formula booklet, you do not need to remember it
- $\operatorname{Sin} 90^{\circ}=1$ so if one of the angles is 90° this becomes SOH from SOHCAHTOA

How can we use the sine rule to find missing side lengths or angles?

- The sine rule can be used when you have anyopposite pairs of sides and angles
- Always start by labelling your triangle with the angles and sides
- Rememberthe sides with the lower-case letters are opposite the angles with the equivalent upper-case letters
- Use the formula in the formula booklet to find the length of a side
- To find a missing angle you can rearrange the formula and use the form

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

- This is not in the formula booklet but can easily be found byrearranging the one given
- Substitute the values you have into the formula and solve

- Exam Tip

- If you're using a calculator make sure that it is in the correct mode (degrees/radians)
- Remember to give your answers as exact values if you are asked too

Worked example

The follo wing diagram shows triangle $\mathrm{ABC} . \mathrm{AB}=8.1 \mathrm{~cm}, \mathrm{AC}=12.3 \mathrm{~cm}, \mathrm{~B} \widehat{\mathrm{C}} \mathrm{A}=27^{\circ}$.

Sketch the diagram and label the sides:

Using the sine rule:

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \begin{array}{l}
\text { We are looking } \\
\text { for an angle } \\
\text { so this version is } \\
\text { easier. }
\end{array} \\
& \frac{\sin x}{12.3}=\frac{\sin 27}{8.1} \\
& \sin x=\frac{12.3 \sin 27}{8.1}
\end{aligned}
$$

Exam

Copyright

$$
x=43.6^{\circ}(3 s . f .)
$$

ii) y.

Sketch the diagram and Label the sides:

$$
y=16.8 \mathrm{~cm} \quad(3 \mathrm{sf.} .)
$$

Ambiguous Sine Rule

What is the ambiguous case of the sine rule?

- If the sine rule is used in a triangle given two sides and an angle which is not the angle between them there may be more than one possible triangle which could be drawn
- The side opposite the given angle could be in two possible positions
- This will create two possible values foreach of the missing angles and two possible lengths for the missing side
- The two angles found opposite the given side (not the ambiguo us side) will add up to 180°
- In IB the question will usually tell you whether the angle you are looking for is acute or obtuse
- The sine rule will always give you the acute option but you can subtract from 180° to find the obtuse angle
- Sometimes the obtuse angle will not be valid
- It could cause the sum of the three interior angles of the triangle to exceed 180°

(9) Exam Tip

- Make sure that you are clear which of the two answers is the one that is required and make sure that you communicate this clearly to the examiner bywriting it on the answerline!

Worked example

Given triangle $\mathrm{ABC}, \mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{~B} \widehat{\mathrm{~A} C}=35^{\circ}$. Find the two possible options for $A \widehat{C} B$, giving both answers to 1 decimal place.

There are two ways triangle $A B C$ can be drawn:

Find $\hat{A C B}: \frac{\sin 35^{\circ}}{5}=\frac{\sin C}{8}$

$$
\begin{aligned}
C & =\sin ^{-1}\left(\frac{8 \sin 35^{\circ}}{5}\right) \\
& =66.59 \ldots
\end{aligned}
$$

© 2024 Exam Papers Practice

$$
\hat{A C B}=66.6^{\circ} \text { or } 113.4^{\circ}(1 \mathrm{dp})
$$

Cosine Rule

What is the cosine rule?

- The cosine rule allows us to find missing side lengths or angles in non-right -angled triangles
- It states that for any triangle

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C ; \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

- Where
- cis the side opposite angle C
- a and bare the other two sides
- Both of these formulae are in the formula booklet, you do not need to remember them
- The first version is used to find a missing side
- The second version is a rearrangement of this and can be used to find a missing angle
- $\operatorname{Cos} 90^{\circ}=0$ so if $\mathrm{C}=90^{\circ}$ this becomes Pythagoras'Theorem

How can we use the cosine rule to find missing side lengths or angles?

- The cosine rule can be used when you have two sides and the angle between them or all three sides
- Always start by labelling your triangle with the angles and sides
- Remember the sides with the lower-case letters are opposite the angles with the equivalent upper-case letters
- As the formula uses C for the known angle, or the angle being found, you can choose to relabel the diagram to match this
- Rememberto also relabel the sides, so that side \boldsymbol{C} is opposite angle C, and so on
- Use the formula $c^{2}=a^{2}+b^{2}-2 a b \cos C$ to find an unknown side

24 Use the formula $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ to find an unknown angle

- $\quad C$ is the angle betweensides a and b
- Substitute the values you have into the formula and solve

- Exam Tip

- If you're using a calculatormake sure that it is in the correct mode (degrees/radians)
- Remember to give your answers as exact values if you are asked too

Exam Papers Practice
(. Worked example

The following diagram shows triangle $\mathrm{ABC} . \mathrm{AB}=4.2 \mathrm{~km}, \mathrm{BC}=3.8 \mathrm{~km}$,
$\mathrm{AC}=7.1 \mathrm{~km}$.

Copyright

Using the cosine rule:

$$
\begin{array}{ll}
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} & \text { We are looking } \\
\text { for an angle } \\
\text { So this version is } \\
\text { easier. }
\end{array}
$$

$$
\cos \theta=\frac{4.2^{2}+3.8^{2}-7.1^{2}}{2(4.2)(3.8)}
$$

$$
\theta=\cos ^{-1}\left(\frac{4.2^{2}+3.8^{2}-7.1^{2}}{2(4.2)(3.8)}\right)
$$

$$
=125.04699 \ldots
$$

$$
\theta=125^{\circ} \quad \text { (3 s.f.) }
$$

Area of a Triangle

Howdo Ifind the area of a non-right triangle?

- The area of any triangle can be found using the formula

$$
A=\frac{1}{2} a b \sin C
$$

- Where C is the angle between sides a and b
- This formula is in the formula booklet, you do not need to remember it
- Be careful to label your triangle correctly so that C is always the angle between the two sides
- $\operatorname{Sin} 90^{\circ}=1$ so if $C=90^{\circ}$ this becomes Area $=1 / 2 \times$ base \times height

- Exam Tip

- If you're using a calculatormake sure that it is in the correct mode (degrees/radians)
- Remember to give your answers as exact values if you are asked too

Worked example

The following diagram shows triangle $\mathrm{ABC} . \mathrm{AB}=32 \mathrm{~cm}, \mathrm{AC}=1.1 \mathrm{~m}, B \widehat{A} \mathrm{C}=74^{\circ}$.

Calculate the area of triangle .
Label the sides of the triangle:

$$
\begin{aligned}
& \text { acme }=0.32 \mathrm{~m} \\
& \text { change all units } \\
& \text { to be the same }
\end{aligned}
$$

Area of a triangle: $A=\frac{1}{2} a b \sin C$

$$
A=\frac{1}{2}(1.1)(0.32) \sin 74^{\circ}
$$

$A=0.169 \mathrm{~m}^{2}$

3.3.3 Applications of Trigonometry \& Pythagoras

Bearings

What are bearings?

- Bearings are a way of describing and using directions as angles
- They are specifically defined for use in navigation because they give a precise location and/or direction

How are bearings defined?

- There are three rules which must be followed every time a bearing is defined
- Theyare measured from the North direction
- An arrow sho wing the North line should be included on the diagram
- Theyare measured clockwise
- The angle is always written in $\mathbf{3}$ figures
- If the angle is less than 100° the first digit will be azero

What are bearings used for?

- Bearings questions will no rmally involve the use of Pythagoras ortrigo nometry to find missing distances (lengths) and directions (angles) within navigation questions
- You should always draw a diagram
- There maybe a scale given oryou mayneed to considerusing a scale
- However no rmally in IB you will be using triangle calculations to find the distances
- Some questions may also involve the use of angle facts to find the missing directions
- To answer a question involving drawing bearings the following steps may help:
- STEP 1: Draw a diagram adding in anypoints and distances you have been given
- STEP 2: Draw a No rth line (arrow po inting vertically up) at the po int you wish to measure the bearing from
- If you are given the bearing from \mathbf{A} to \mathbf{B} draw the North line at \mathbf{A}
- STEP 3: Measure the angle of the bearing given from the North line in the clockwise direction
- STEP 4: Draw a line and add the point B at the given distance
- You will likely then need to use trigono metry to calculate the shortest distance or ano ther given distance

(9) Exam Tip

- Always draw a big, clear diagram and annotate it, be especially careful to label the angles in the correct places!

Worked example

The point B is 7 km from A on a bearing of 105°. The distance from B to C is 5 km and the bearing from B to C is 230°. Find the distance from A to C.

Always start with a diagram:

Fill in the angles you can on the diagram (angle between them so we can use the cosine rule

Copyright

$$
\begin{aligned}
& \text { angle between rem } \\
& \text { can use the cosir } \\
& \text { for the third side }
\end{aligned} \quad \begin{aligned}
& A C^{2}=a^{2}+b^{2}-2 a b \cos C \\
&=33.849 \ldots \\
& A C=5.82 \mathrm{~km}(3)(5) \cos \left(55^{\circ}\right) \\
&A \text { s.f. })
\end{aligned}
$$

Exam Papers Practice

Elevation \& Depression

What are the angles of elevation and depression?

- If a personlooks at an object that is not on the same horizontal line as theireye-level they will be looking at either an angle of elevation ordepression
- If a person looks up at an object theirline of sight will be at an angle of elevation with the horizontal
- If a person looks down at an object their line of sight will be at an angle of depression with the horizontal
- Angles of elevation and depression are measured from the horizontal
- Right -angled trigo nometry can be used to find an angle of elevation or depression ora missing distance
- Tanis often used in real-life scenarios with angles of elevation and depression
- For example if we know the distance we are standing from a tree and the angle of elevation of the top of the tree we can use Tan to find its height
- Or if we are looking at a bo at at to sea and we know our height above sea level and the angle of depression we can find how far away the boat is

(9) Exam Tip

- It maybe useful to draw more than one diagram if the triangles that you are interested in overlap one ano ther

Worked example

A cliff is perpendicular to the sea and the top of the cliff stands 24 m above the level of the sea. The angle of depression from the cliff to a bo at at sea is 35°. At a point $\boldsymbol{X} \mathrm{m}$ up the cliff is a flag marker and the angle of elevation from the boat to the flag marker is 18°.
a) Draw and label a diagram to show the top of the cliff, T, the foot of the cliff, F, the flag marker, M, and the bo at, B, labelling all the angles and distances given above.

b)

Find the distance from the boat to the foot of the cliff.

and adjacent so
use Tan

$$
\begin{aligned}
\operatorname{Tan} 35^{\circ} & =\frac{24}{B F} \\
B F & =\frac{24}{\operatorname{Tan} 35^{\circ}}
\end{aligned}
$$

$$
B F=34.3 \mathrm{~m} \quad(3 \mathrm{~s} . \mathrm{f} .)
$$

c) Find the value of \boldsymbol{X}.

Exam Papers Practice

Exam
Copyright
© 2024 Exam Papers Practice

Constructing Diagrams

What diagrams will Ineed to construct?

- In IB you will be expected to construct diagrams based on information given
- The information will include compass directions, bearings, angles
- Look out for the plane the diagram should be drawn in
- It will either be horizontal (something occurring at sea or on the ground)
- Orit will be vertical (Including height)
- Work through the statements given in the instructions systematically

What do Ineed to know?

- Your diagrams will be sketches, they do not need to be accurate orto scale
- However the more accurate your diagram is the easier it is to work with
- Read the full set of instructions once before beginning to draw the diagram so you have a rough idea of where each object is
- Make sure you know your compass directions
- Due east means on a bearing of 090
- Draw the line directlyto the right
- Due south means on a bearing of 180°
- Draw the line vertic ally downwards
- Due west means on a bearing of 270°
- Draw the line directlyto the left
- Due northmeans on abearing of $360^{\circ}\left(\right.$ or $\left.000^{\circ}\right)$
- Draw the line vertic ally upwards
- Using the above bearings forcompass directions will help you to estimate angles for other bearings onyour diagram

- Exam Tip

- Draw your diagrams in pencil so that you can easily erase any errors

Worked example

A city at B is due east of a city at A and A is due north of a city at E. A city at C is due south of B.
The bearing from A to D is 155° and the bearing from D to C is 30°.
The distance $A B=50 \mathrm{~km}$, the distances $B C=C D=30 \mathrm{~km}$ and the distances $D E=A E=40 \mathrm{~km}$.
Draw and label a diagram to show the cities A, B, C, D and End clearly mark the bearings and distances given.

+
Copyright
© 2024 Exam Papers Practice

