

Page 1 of 7

3.3 Reverse Polish

Name: ________________________

Class: ________________________

Date: ________________________

Time: 36 minutes

Marks: 27 marks

Comments:

Page 2 of 7

Q1.
How would the infix expression 5 − 3 be represented in Reverse Polish notation?

(Total 1 mark)

Q2.

How would the infix expression 3 + 4 * 2 − 1 be represented in Reverse Polish notation?

(Total 2 marks)

Q3.
Explain why Reverse Polish notation is sometimes used instead of infix notation.

(Total 2 marks)

Q4.
To evaluate an expression in Reverse Polish notation, you start from the left hand side of
the expression and look at each item until you find an operator (eg + or −).

This operator is then applied to the two values immediately preceding it in the expression.
The result obtained from this process replaces the operator and the two values used to
calculate it. This process continues until there is only one value in the expression, which is

the final result of the evaluation.

For example 5 2 7 + + would change to 5 9 + after the first replacement.

Explain how a stack could be used in the process of evaluating an expression in Reverse
Polish notation.

Page 3 of 7

(Total 3 marks)

Q5.
Reverse Polish Notation is an alternative to standard infix notation for writing arithmetic
expressions.

(a) Convert the Reverse Polish Notation expressions in the table to their equivalent
infix expressions.

Reverse Polish Notation Equivalent Infix Expression

18 9 –

10 4 – 12 ×

(2)

(b) State one advantage of Reverse Polish Notation over infix notation.

(1)

(Total 3 marks)

Q6.
Convert the following Reverse Polish Notation expressions to their equivalent infix
expressions.

(a) 3 4 *

(1)

(b) 12 8 + 4 *

(1)

(c) Reverse Polish Notation is an alternative to standard infix notation for writing
arithmetic expressions.

State one advantage of Reverse Polish Notation over infix notation.

Page 4 of 7

(1)

(Total 3 marks)

Q7.
Reverse Polish Notation is an alternative to standard infix notation for writing arithmetic
expressions.

(a) Convert the following Reverse Polish Notation expressions to their equivalent infix
expressions.

Reverse Polish Notation Equivalent Infix Expression

45 6 +

12 19 + 8 *

(2)

(b) State one advantage of Reverse Polish Notation over infix notation.

(1)

(c) The pseudo-code algorithm below can be used to calculate the result of evaluating
a Reverse Polish Notation expression that is stored in a string. The algorithm is
designed to work only with the single digit denary numbers 0 to 9. It uses

procedures and functions listed in the table below, two of which operate on a stack
data structure.

StringPos ← 0

Repeat

 StringPos ← StringPos + 1

 Token ← GetCharFromString(InputString, StringPos)

 If Token = ‘+’ Or Token = ‘-’ Or Token = ‘/’ Or Token = ‘*’

 Then

 Op2 ←Pop()

 Op1 ← Pop()

 Case Token Of

 ‘+’: Result ← Op1 + Op2

 ‘-’: Result ← Op1 - Op2

 ‘/’: Result ← Op1 / Op2

 ‘*’: Result ←Op1 * Op2

 EndCase

 Push(Result)

 Else

 IntegerVal ←ConvertToInteger(Token)

 Push(IntegerVal)

 EndIf

Until StringPos = Length(InputString)

Output Result

Procedure/Function Purpose Example(s)

GetCharFromString

(InputString:String Returns the character GetCharFromString

Page 5 of 7

,

StringPos:Integer):

 Char

at position StringPos

within the string
InputString.

Note that the leftmost
letter is position 1, not
position 0.

("Computing", 1)

would return the
character 'C'.
GetCharFromString

("Computing", 3)

would return the
character 'm'.

ConvertToInteger

(ACharacter: Char):

Integer

Returns the integer
equivalent of the
character in
ACharacter.

ConvertToInteger('4'

) would return the

integer value 4.

Length (AString:
String): Integer

Returns a count of the

number of characters in
the string AString.

Length("AQA") would

return the integer value
3.

Push (ANumber:
Integer)

Puts the number in
ANumber onto the stack.

Push(6) would put the

number 6 on top of the
stack.

Pop (): Integer Removes the number
from the top of the stack
and returns it.

X ← Pop() would

remove the value from
the top of the stack and
put it in X.

(d) Complete the table below to trace the execution of the algorithm when
InputString is the string: 64+32+*

In the Stack column, show the contents of the stack once for each iteration of the

Repeat..Until loop, as it would be at the end of the iteration.

The first row and the leftmost column of the table have been completed for you.

StringPos Token IntegerVal Op1 Op2 Result Stack

0 - - - - -

1

2

Page 6 of 7

3

4

5

6

7

(5)

Final output of algorithm: __

(1)

(e) A programmer is going to implement the algorithm above in a programming
language that does not provide built-in support for a stack data structure.

The programmer intends to simulate a stack by using a fixed length array of 20
integers named StackArray with indices running from 1 to 20 and an integer

variable TopOfStackPointer which will be initialised to 0.

Write a pseudo-code algorithm for the Push operation to push a value stored in the

variable ANumber onto the stack.

Your algorithm should cope appropriately with any potential errors that might occur.

Page 7 of 7

(4)

(Total 13 marks)

