

Page 1 of 8

3.3 Reverse Polish Mark Scheme

Page 2 of 8

Mark schemes

Q1.
Mark is for AO2 (apply)

5 3 -

[1]

Q2.
All marks AO2 (apply)

3 4 2 * + 1 –

Mark as follows:

1 mark correct order for values and + and – either side of the 1
1 mark * directly after 4 2

Max 1 if any errors

[2]

Q3.
All marks AO1 (understanding)

Simpler for a machine / computer to evaluate; A. easier R. to understand

simpler to code algorithm;

Do not need brackets (to show correct order of evaluation/calculation); A. RPN
expressions cannot be ambiguous as BOD

Operators appear in the order required for computation;

No need for order of precedence of operators;

No need to backtrack when evaluating;

Max 2

[2]

Q4.
All marks AO1 (understanding)

(Starting at LHS of expression) push values/operands onto stack; R. if operators are
also pushed onto stack

Each time operator reached pop top two values off stack (and apply operator to
them);

Add result (of applying operator) to stack;

Max 2 if any errors Max 2 if more than one stack used

Page 3 of 8

Note for examiners: award 0 marks if description is not about a stack / LIFO
structure even if the word “stack” has been used

[3]

Q5.
(a)

Reverse Polish
Notation

Equivalent Infix
Expression

18 9 -

18 - 9

A. (18 - 9)

R. 9 – 18

10 4 - 12 ×

(10 - 4) × 12

R. 10 - 4 × 12

A. * for ×

1 mark per correct infix expression
2

(b) Simpler/quicker for a machine/computer to evaluate //
simpler to code algorithm A. Easier as BOD R. To
understand
Do not need brackets (to show correct order of
evaluation/calculation);

N.E. Does not use brackets
T.O. No brackets so less storage space used
Operators appear in the order required for computation;
No need for order of precedence of operators;
No need to backtrack when evaluating;
A. RPN expressions cannot be ambiguous as BOD

1

[3]

Q6.

(a) All marks AO2 (apply)
3 * 4

1

(b) All marks AO2 (apply)

(12 + 8) * 4;
1

(c) Mark for AO1 (understanding)

1 mark: Simpler / easier for a machine / computer to evaluate / / simpler /

easier to code algorithm
R Simpler / easier to understand
Do not need brackets (to show correct order of evaluation / calculation);
Operators appear in the order required for computation;
No need for order of precedence of operators;

Page 4 of 8

No need to backtrack when evaluating;
A RPN expressions cannot be ambiguous as Benefit Of Doubt (BOD)

1

[3]

Q7.

(a)

Reverse Polish Notation Equivalent Infix Expression

45 6 + 45 + 6
R 6 + 45

12 19 + 8 * (12 + 19) * 8
R 12+19*8, (19+12)*8
A x for *

2

(b) Simpler for a machine / computer to evaluate // simpler to code algorithm
A easier R to understand
Do not need brackets (to show correct order of evaluation/calculation);
Operators appear in the order required for computation;
No need for order of precedence of operators;
No need to backtrack when evaluating;

A RPN expressions cannot be ambiguous as BOD
1

(c)

Page 5 of 8

Output : 50

1 mark for each of rows 1–3
1 mark for rows 4 and 5 together
1 mark for rows 6 and 7 together
1 mark for correct final output
Values of Op1 and Op2 MUST be assigned in rows 3, 6 and 7 to award the
marks for these rows. They cannot be inferred from incorrectly entered
previous values.

I values in empty cells, even if they are incorrect.
6

(d) If StackArray is full
 Then Stack Full Error

 Else

 Increment TopOfStackPointer

 StackArray [TopOfStackPointer]

 ANumber

EndIf

1 mark for appropriate If structure including condition (does not need both

Then and Else) – Do not award this mark if ANumber is put into StackArray

outside the If.
1 mark for reporting error in correct place

1 mark* for incrementing TopOfStackPointer

1 mark* for storing value in ANumber into correct position in array
* = if the store instruction is given before the increment instruction OR

Page 6 of 8

the If structure then award Max 1 of these two marks UNLESS the item is

inserted at position TopOfStackPointer+1 so the code would work.

I initialisation of TopOfStackPointer to 0

A TopOfStackPointer=20/>=20 for Stack is full

A Logic of if structure reversed i.e. If stack is not full /

TopOfStackPointer<20 / <>20/!=20 and Then, Else swapped

A Any type of brackets or reasonable notation for the array index
DPT If candidate has used a different name any variable then do not award
first mark but award subsequent marks as if correct name used.
Refer answers where candidate has used a loop to find position to insert item
into stack to team leaders.

4

[13]

Page 7 of 8

Examiner reports

Q1.
This question was about reverse Polish notation (RPN) and stacks. Almost all students

were able to convert the simple infix expression into RPN.

Q2.
This question was about reverse Polish notation (RPN) and stacks. Less than a fifth were
able to get any marks for the more complex conversion

Q3.
This question was about reverse Polish notation (RPN) and stacks. The majority of
students were able to state one advantage of RPN with no need for brackets being by far
the most common correct answer.

Q4.
This question was about reverse Polish notation (RPN) and stacks. It required students to

combine their knowledge of RPN and stacks. A number of clearly-written accurate
explanations were seen. Some answers were about converting infix to RPN instead of
evaluating an RPN expression; another common error was to use multiple stacks even
though the question specified that just one stack should be used. Some students did not
fully understand how a stack operates and wrote about accessing items that were not at
the top of the stack.

Q5.
This question was about Reverse Polish Notation (RPN). The vast majority of candidates
were able to convert both of the expressions from RPN to infix notation for part (a).

Part (b) asked candidates to explain an advantage of RPN. The majori ty of candidates
were able to do this, although some responses were rather superficial. It is true that RPN
does not require the use of brackets in expressions, but few candidates went on to explain

that this was the case because the order of evaluation was determined entirely by the
order in which the operators appeared. Some candidates revealed a lack of understanding
of why the lack of the use of brackets was significant, suggesting that it would save
memory. Candidates need to be careful to avoid using human-oriented terms such as
“understand” and “easier” in the context of answers relating to computer programs.
Responses such as “A computer can understand it more easily” were not markworthy.

Q7.
Part (a): This question part was very well answered with the majority of candidates getting
both marks. The only common mistake was to miss out the brackets in the expression that
should be (12+19)*8.

Part (b): As with part (a), this question part was also well answered. The most common
correct response was that brackets are not required. It would have been nice to see some

more detailed explanations of this point, rather than just a brief statement of it. A common
incorrect answer was that RPN was easier for a computer to understand. The word
“understand” is not appropriate in this context.

Page 8 of 8

Part (c): Responses to this question part were excellent, with relatively few errors made.
The majority of candidates got full marks which is unusual for a question involving a trace
table. The only two recurring mistakes were to pop the numbers off the stack in the wrong
order, resulting in the transposition of the values in Op1 and Op2 and forgetting to push
50 back onto the stack at the very end.

Part (d): This question was well answered, with most candidates getting some marks and
a significant number more than half marks. The most common mistake was to increment
the TopOfStackPointer in the wrong place – either before the If construct which

tested for the stack full condition or after the value in ANumber was stored into the

StackArray. Some candidates implemented solutions that used a loop to find the first

empty position in the array to insert the number into. These were awarded credit if they
would have worked, but many failed to test properly for the stack being full. It is important
that candidates use the correct variable names when they are given on the question
paper.

