

3.2 Geometry of 3D Shapes

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

AF =
$$\sqrt{72^2 + 45^2}$$

ii) BH =
$$\sqrt{BL^2 + CH^2}$$

BH
$$\approx 121 \text{ cm}$$

AC = $\sqrt{AD^2 + DC^2}$

AC = $\sqrt{72^2 + 112^2}$

AC $\approx 133 \text{ cm}$

Exam Papers Practice

b) Notice the right-angled triangle BDG.

$$BC = \sqrt{BD^2 + DG^2}$$

a) Volume of a sphere

$$V = \frac{4}{3}\pi r^3$$
 (in formula booklet)

 $V = \frac{4}{3}\pi (4)^3$
 $V = \frac{256}{3}\pi = 268.08257...$
 $V = 2.68 \times 10^2 \text{ mm}^3 (3sf)$

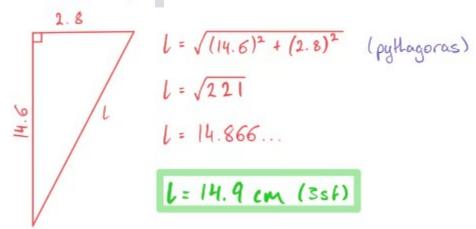
b) Volume of a cylinder

 $V = \pi r^2 h$ (in formula booklet)

 $\frac{256}{3}\pi = \pi r^2 (16)$
 $r = \sqrt{\frac{16}{3}} = 2.3094...$

a) Volume of a right circular cone $V = \frac{1}{3} \pi r^2 h$ (in formula booklet)

Sub V and r into formula and rearrange for h.


$$|20 = \frac{1}{3} \pi (2.8)^2 h$$

$$h = \frac{120}{\frac{1}{3}\pi (2.8)^2}$$

$$h = 14.616...$$

$$h = 14.6 \text{ cm } (3sf)$$

Ex b) Notice the right-angled triangle. actice

c) Curved surface area of a cone formula

$$A = \pi r l$$
 (m formula booklet)

 $r = 2.8 \quad l = |4.9|$

Sub r and l into formula.

 $A = \pi (2.8)(14.9)$
 $A = 131.067...$
 $A = 131.067...$

Question 4

a) Volume of a cylinder formula

 $V = \pi r^2 h$ (in formula booklet)

 $V = 80$ $r = \frac{6.7}{2} = 3.35$

Sub in V and r into formula and

Fearrange for Ch. S Practice

 $80 = \pi (3.35)^2 h$
 $h = \frac{80}{\pi (3.35)^2}$
 $h = 2.269...$
 $h = 2.27$ cm (3sf)

b) Volume of a hemisphere formula
$$V = \frac{2}{3} \pi r^{3} \qquad \left(\frac{V_{sphere}}{2}\right)$$

NB the volume of a hemisphere is half the volume of a sphere with the same radius.

Sub V into formula and rearrange for r.

$$20 = \frac{2}{3} \pi r^{3}$$

$$r = \sqrt{\frac{20}{3}\pi}$$

$$r = 2.1215...$$

Exam Papers Practice

a) Arc length formula
$$L = \frac{\Theta}{360} \times 2\pi r$$
 (in formula booklet)

i)
$$0 = 62$$
 $r = 11.4$
Sub 0 and r into formula.
 $l = \frac{62}{360} \times 2\pi (11.4)$

$$l = 12.3 \text{ cm } (3sf)$$

ii) $0 = 360 - 62 = 298$
 $c = 11.4$

Sub 0 and c into termula.

 $l = \frac{298}{360} \times 2\pi (11.4)$
 $l = 59.2923...$

L = 12.3359...

Exall=59.3 cm (3sh) rs Practice

$$A = \frac{\Theta}{360} \times \pi r^2$$

(in formula booklet)

$$0 = 62$$
 $r = 11.4$

Sub O and r into formula.

$$A = \frac{62}{360} \times \pi (11.4)^2$$

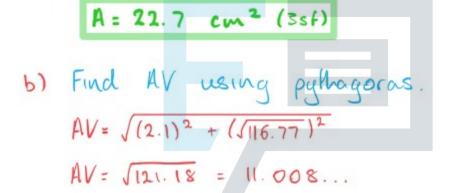
c) Volume (V) = Cross-sectional area (A) x length (1)

Cross-sectional area is the major sector OAB.

Examo Propers Practice

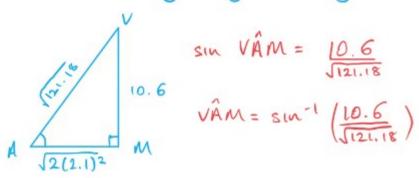
Sub O, r and I into formula.

$$V = \frac{298}{360} \times \pi (11.4)^2 \times 110$$



$$A = \frac{1}{2}bh$$

(in formula booklet)


$$b_{ABV} = 4.2$$
 $b_{ABV} = \sqrt{(2.1)^2 + (10.6)^2}$ $= \sqrt{116.77}$

$$A = \frac{1}{2} (4.2) (\sqrt{116.77})$$

Exampess Practice

c) We have a right-angled triangle VAM.

