Stationary Waves TOPIC QUESTIONS

Level	AS Level			
Subject	Physics			
Exam Board	AQA			
Paper Type	Multiple Choice			
Time Allowed : 30min				

1. Two points on a progressive wave are out of phase by 0.41 rad.What is this phase difference?

A 23°

B 47°
C 74°

D 148°
2. A wave travels across the surface of water.

The diagram shows how the displacement of water particles at the surface varies with distance.

Which row correctly describes both w and z ?

	\boldsymbol{w}	\boldsymbol{z}
A	amplitude	wavelength
B	half-amplitude	period
C	half-amplitude	wavelength
D	amplitude	period

For more help, please visit www.exampaperspractice.co.uk
3. Unpolarised light travels through two polarising filters \mathbf{X} and \mathbf{Y} and is then incident on a screen. When \mathbf{X} and \mathbf{Y} are arranged as shown, there is a maximum intensity on the screen.
\mathbf{X} is held stationary but \mathbf{Y} is rotated in a plane at right angles to the beam so that θ increases.

What are the next three values of θ, in rad, for which the beam hits the screen with maximum intensity?

A $\frac{\pi}{2}, \frac{2 \pi}{2}, \frac{3 \pi}{2}$
B $\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}$
C $\pi, 2 \pi, 3 \pi$
D $2 \pi, 4 \pi, 6 \pi$
4. The diagram shows the cross-section of a progressive transverse wave travelling at $24 \mathrm{~cm} \mathrm{~s}^{-1}$ on water. The amplitude of the wave is 2.0 cm and the frequency is 4.0 Hz .

Which statement is correct?

A The phase difference between particles at \mathbf{P} and \mathbf{S} is $\frac{\pi}{2} \mathrm{rad}$.
B The distance between \mathbf{P} and \mathbf{R} is 6.0 cm .

C The particle velocity at \mathbf{Q} is a maximum.

For more help, please visit www.exampaperspractice.co.uk

D Particles at \mathbf{P} and \mathbf{R} are in phase.

5. Stationary waves are set up on a rope of length 1.0 m fixed at both ends.

Which statement is not correct?

A The first harmonic has a wavelength of 2.0 m .
B The midpoint of the rope is always stationary for even-numbered harmonics.

C A harmonic of wavelength 0.4 m can be set up on the rope.

D There are five nodes on the rope for the fifth harmonic.
6. The speed of light decreases by 40% when it travels from air into a transparent medium.

What is the refractive index of the medium?

A 0.6

B 1.4
C 1.7

D $\quad 2.5$
7. A monochromatic light wave travels from glass into air.

Which row shows what happens to the wavelength, speed and photon energy?

	Wavelength	Speed	Photon energy
A	increases	increases	increases
B	does not change	decreases	does not change
C	does not change	decreases	increases
D	increases	increases	does not change

For more help, please visit www.exampaperspractice.co.uk
8. Monochromatic light is incident normally on a diffraction grating that has 4.50×10^{5} lines m^{-1}. The angle between the second-order diffraction maxima is 44°.

What is the wavelength of the light?

A 208 nm

B $\quad 416 \mathrm{~nm}$

C $\quad 772 \mathrm{~nm}$

D $\quad 832 \mathrm{~nm}$
9. In a Young's double-slit experiment, the spacing of the double slits is s and the distance betweenthe slits and the screen on which fringes are formed is D. When monochromatic light of wavelength λ is incident on the slits the distance between adjacent fringes on the screen is w.

Which row shows another arrangement that produces a fringe spacing of w ?

	Spacing of double slits	Distance between the slits and the screen	Wavelength of the light
A	$4 s$	$2 D$	2λ
B	$2 s$	$4 D$	2λ
C	$2 s$	$2 D$	4λ
D	$2 s$	$2 D$	2λ

10. Monochromatic electromagnetic radiation of wavelength $5.8 \times 10^{-7} \mathrm{~m}$ is incident normally on adiffraction grating with 3.0×10^{5} lines per metre.

What is the highest order maximum produced?

A 5

B 6

C 10

D 13
11. Which one of the following provides direct experimental evidence that light is a transverse wavemotion rather than a longitudinal wave motion?

A Two light waves that are coherent can be made to interfere.
B Light can be diffracted.
C Light can be polarised.
D The intensity of light from a point source falls off inversely as the square of the distance from the source.

For more help, please visit www.exampaperspractice.co.uk
12. The sound quality of a portable radio is improved by adjusting the orientation of the aerial. Which statement is a correct explanation of this improvement?

A The radio waves from the transmitter are polarised.
B The radio waves from the transmitter are unpolarised.
C The radio waves become polarised as a result of adjusting the aerial.
D The radio waves become unpolarised as a result of adjusting the aerial.

EXAM PAPERS PRACTICE
13. A microwave transmitter is used to direct microwaves of wavelength 30 mm along a line XY . A metalplate is positioned at right angles to XY with its mid-point on the line, as shown.

When a detector is moved gradually along XY, its reading alternates between maxima andminima. Which one of the following statements is not correct?

A The distance between two minima could be 15 mm .
B The distance between two maxima could be 30 mm .
C The distance between a minimum and a maximum could be 30 mm .
D The distance between a minimum and a maximum could be 37.5 mm .
14. By approximately how many times is the wavelength of audible sound waves greater than thewavelength of light waves?

A $\quad 10^{2}$
B 10^{6}
C $\quad 10^{10}$
D $\quad 10^{14}$
15. A stationary wave is formed by two identical waves of frequency 300 Hz travelling in opposite directions along the same line. If the distance between adjacent nodes is 0.60 m , what is thespeed of each wave?

A $180 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 250 \mathrm{~m} \mathrm{~s}^{-1+}$
C $360 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 500 \mathrm{~m} \mathrm{~s}^{-1}$
16. Monochromatic light of wavelength 490 nm falls normally on a diffraction grating that has 6×10^{5} lines per metre. Which one of the following is correct?

A The first order is observed at angle of diffraction of 17°.
B The second order is observed at angle of diffraction of 34°.
C The third and higher orders are not produced.
D A grating with more lines per metre could produce more orders.

17.

In a double slit system used to produce interference fringes, the separation of the slits is S For more help, please visit www.exampaperspractice.co.uk
and thewidth of each slit is x. L is a source of monochromatic light. Which one of the following changes would decrease the separation of the fringes seen on the screen?

A moving the screen closer to the double slits
B decreasing the width, x, of each slit, but keeping S constant
C decreasing the separation, s, of the slits
D exchanging L for a monochromatic source of longer wavelength

For more help, please visit www.exampaperspractice.co.uk
18.

The diagram above shows the first four diffraction orders each side of the zero order when a beam of monochromatic light is incident normally on a diffraction grating of slit separation d. All the angles of diffraction are small. Which one of the patterns, \mathbf{A} to \mathbf{D}, drawn on the same scale, is
obtained when the grating is exchanged for one with a slit separation
?

A

B

C

D
19. Interference maxima produced by a double source are observed at a distance of 1.0 m from thesources. In which one of the following cases are the maxima closest together?

A red light of wavelength 700 nm from sources 4.0 mm apart
B sound waves of wavelength 20 mm from sources 50 mm apart
C blue light of wavelength 450 nm from sources 2.0 mm apart
D surface water waves of wavelength 10 mm from sources 200 mm apart
20. Light of wavelength λ is incident normally on a diffraction grating for which adjacent lines are adistance 3λ apart. What is the angle between the second order maximum and the straight-through position?

A 9.6°
B 20°
C 42°
D There is no second order maximum

