

3.2 Oxides, Group 1 & Group 17

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry SL Students of other boards may also find this useful

The correct answer is A because:

- The metallic radius of an element is half the distance between two
 adjacent metallic nuclei
- · An electron shell is added to each element moving down group I
- · This increases the radius of the atoms as we move down the group

B, C & D are incorrect as incorrect as statements 1 and 2 are correct. Statement 3 is incorrect as the nuclear forces do increase but are outweighed by the addition of an extra electron shell

Exam Papers Practice

Page	2
. ~ge	_

	1	-	-		
	1		1	s	
			1		
	4		5	2	

The correct answer is C because:


- In period 3 the following oxides produce an acidic solution when added to water:
- phosphorus oxide: $P_4O_6 + 6H_2O \rightarrow 4H_3PO_3$ or $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$
- sulfur dioxide:
 - $SO_3 + H_2O \rightarrow H_2SO_4$
- H₃PO₃, H₃PO₄ and H₂SO₄ are all acids because they dissociate in water, releasing H⁺ ions
- Therefore, arsenic and selenium oxides will also produce an acidic solution

Ais	aluminium (and therefore Ga) oxide does	
incorrect as	not react simply with water because	
	despite containing oxide ions , they are	
	held too strongly in the solid lattice to	
	react with the water	
	silicon (and therefore Ge) oxide does not	actic
	react with water because it has a giant	actic
	covalent structure	
Bis	silicon (and therefore Ge) oxide does not	
incorrect as	react with water because it has a giant covalent structure	
Dis	phosphorous (and therefore As) oxides	
incorrect as	also react with water to produce an acidic solution	

The correct answer is **D** because:

- Sulfur trioxide reacts with water to produce a strong acidic solution in water:
- $SO_3 + H_2O \rightarrow H_2SO_4$
- A 'strong' acid is one that fully dissociates into its ions when in aqueous solution producing a high concentration of H⁺ ions and therefore has a very low pH (1)
- The electronic configuration of phosphorus is $1s^2\,2s^2\,2p^6\,3s^2\,3p^3$

• Following **Hund's rule**, the 3 electrons in the 3p orbital are found separated across different orbitals

A is incorrect as	phosphorus oxides only produce weak acids (H ₃ PO ₃ and H ₃ PO ₄) that do not fully dissociate in solution
B & C are incorrect as	the electronic configuration for sulfur is $1s^2 2s^2 2p^6 3s^2 3p^4$ and therefore has one electron pair in the 3p orbital
	phosphorus oxides only produce weak acids (H ₃ PO ₃ and H ₃ PO ₄) that do not fully dissociate in solution

The correct answer is A because:

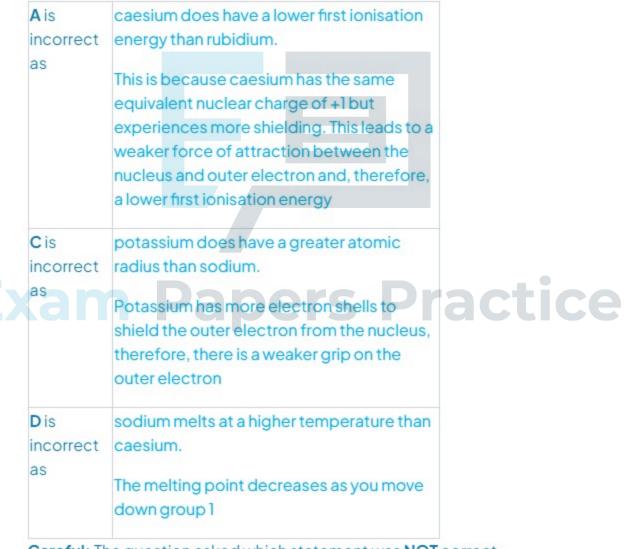
- There are only weak van der Waals' forces between the diatomic molecules, caused by instantaneous dipole-induced dipole forces
- These forces increase as you go down Group 17 as the number of electrons in the molecules increase
- The greater the number of electrons the greater the chance of instantaneous dipoles arising within molecules inducing dipoles in neighbouring molecules
- The larger the molecules, the stronger the van der Waals' forces
- Therefore, iodine has a stronger force than fluorine

B is incorrect as	the bond length increases in Group 17 as you go down the group
C is incorrect as	the bond energy decreases as you go down Group 17
D is incorrect as	the boiling point of Group 17 increases as you go down the group

The correct answer is **B** because:

5

• As you go down group 1, the atomic radius increases


- There are more filled shells to shield the outer electrons from the attraction of the nucleus
- · More filled shells means that the radius of the atom increases
- This causes the force of attraction between the nucleus and outer electrons to be reduced
- So, the distance between the nucleus and the outer electrons increases
- Therefore, less energy is needed to remove an outer electron.

as you go down group 1, the first ionisation energy decreases
as you go down group 1, the melting point decreases. This is because as the ions get larger the distance between the bonding electrons and the positive nucleus gets larger and reduces the overall attraction between the two
as you go down group 1, the reactions of the elements with water become more vigorous

The correct answer is **B** because:

- The group 1 metals become increasingly reactive with water as you move down the group
 - Rubidium is below potassium on the Periodic Table, so it should react more violently Rb + H₂O → RbOH + ½H₂

Careful: The question asked which statement was NOT correct

The correct answer is A because:

- · Calcium is a metal so will form an alkaline oxide
 - · This will result in an alkaline solution turning litmus paper blue
- · Tellurium is a non-metal so will form an acidic oxide
 - · This will result in an acidic solution turning litmus paper red

B, C & D are incorrect as	they give the wrong colour changes for litmus paper for oxides of calcium
	and tellurium in water
8	
The correct ar	nswe <mark>r is A</mark> because:

- Strontium is a metal so forms a basic oxide giving a pH greater than 7
- · Lithium is a metal so forms a basic oxide
- A basic oxide would turn universal indicator blue

EX	B, C & D are incorrect	they contain statement III which	12	cti	ce
	as	isincorrect			

The correct answer is **B** because:

- Reactivity decreases down group 17
- Fluorine is above chlorine in group 17
 - Fluorine is more reactive than chlorine
 - Fluorine will displace the chloride forming potassium fluoride and chlorine
- Bromine is above iodine in group 17
 - Bromine is more reactive than iodine
 - Bromine will displace the iodide forming potassium bromide and iodine

A, C & D are incorrect as	they all contain statement II which is false.
	lodine is below chlorine in group 17 hence iodine is less reactive.Therefore iodine will not displace the chloride ions.

10

The correct answer is A because:

- Sodium is a metal so forms a basic oxide
 - When dissolved in water this will form an alkaline solution turning litmus paper blue

	acidic oxides would dissolve in water to form acidic solutions turning litmus paper red
C is incorrect as	acidic oxides would dissolve in water to form acidic solutions giving a solution with a pH of less than 7
D is incorrect as	sodium oxide does not react with magnesium metal