

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

## **IB Chemistry: SL**

## 3.2 Oxides, Group 1 & Group 17



**CHEMISTRY** 

SL



# 3.2 Oxides, Group 1 & Group 17 Question Paper

| Course     | DP IB Chemistry                |
|------------|--------------------------------|
| Section    | 3. Periodicity                 |
| Topic      | 3.2 Oxides, Group 1 & Group 17 |
| Difficulty | Hard                           |

## **EXAM PAPERS PRACTICE**

Time allowed: 20

Score: /10

Percentage: /100



#### Question 1

A student reacts the most basic period 3 oxide with the strongest acid formed from a period 3 element.

Identify the correct equation for this reaction

- A.  $Na_2O + 2HCI \rightarrow 2NaCI + H_2O$
- B.  $3MgO + 2H_3PO \rightarrow Mg_3(PO_4)_2 + 3H_2O$
- C.  $Na_2O + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$
- D. MgO + HCl  $\rightarrow$  MgCl<sub>2</sub> + H<sub>2</sub>O

[1 mark]

#### **Question 2**

A student wants to identify an unknown alkali metal halide salt, MX. The student performs experiments on the alkali metal, M, and halogen,  $X_2$  which make up the salt.

The student's results and observations are shown.

| Test                                                                                  | Observation                                                   |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| The metal, M, is added to water                                                       | The metal reacts violently with water producing a lilac flame |  |
| The halogen, X <sub>2</sub> , is bubbled througha solution of the metal bromide,  MBr | The solution changes from colourless to orange                |  |
| The halide ion, X <sup>-</sup> , is added to a solution of silver ions                | A white precipitate forms                                     |  |

What is the identity of the unknown alkali metal, MX?

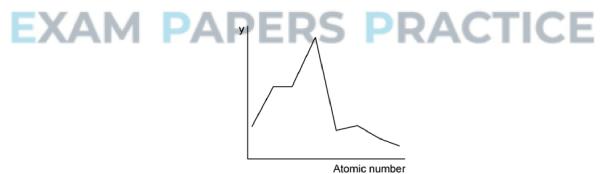
- A. Lithium chloride
- B. Potassium iodide
- C. Potassium chloride
- D. Lithium iodide

[1 mark]

#### **Question 3**

A dark red/brown solution is formed when a halide salt containing the halide ion  $\mathbf{Y}^-$  reacts with aqueous chlorine. This solution then forms a violet solution when shaken with a cyclohexane solution.

What is halogen, Y?


- A. Fluorine
- B. Iodine
- C. Iodide
- D. Bromide



[1 mark]

#### **Question 4**

The x-axis of the graph below is the atomic number of the elements in Period 3.



Which variable could represent the y-axis?

- A. Melting point
- B. Electronegativity
- C. Ionic radius
- D. Atomic radius [1 mark]



#### **Question 5**

The first ionisation energies and reactions with water for sodium and caesium are compared below. Which set of statements, comparing sodium and caesium, are correct?

| Na first ionisatio |        | Cs first ionisation | Na reaction with | Cs reaction with |  |
|--------------------|--------|---------------------|------------------|------------------|--|
|                    | energy | energy              | water            | water            |  |
| А                  | Lower  | Higher              | Faster           | Slower           |  |
| В                  | Lower  | Higher              | Slower           | Faster           |  |
| С                  | Higher | Lower               | Faster           | Slower           |  |
| D                  | Higher | Lower               | Slower           | Faster           |  |



[1 mark]

### **Question 6**

G and J are oxides of different Period 3 elements.

If one mole of J is added to water, the solution formed is neutralised by exactly one mole of G.

What could be the identities of G and J?

|   | G                              | J                              |  |
|---|--------------------------------|--------------------------------|--|
| А | Na₂O                           | SO₃                            |  |
| В | Na₂O                           | P <sub>4</sub> O <sub>10</sub> |  |
| С | Al <sub>2</sub> O <sub>3</sub> | SO₃                            |  |
| D | Al <sub>2</sub> O <sub>3</sub> | P <sub>4</sub> O <sub>10</sub> |  |

[1 mark]



#### **Question 7**

An element is found in group I of the periodic table, below lithium and sodium. From this information it is likely that the element is a metal with

- A. A high melting point and which reacts slowly with water
- B. A low melting point and which reacts vigorously with water
- C. A high melting point and which reacts vigorously with water
- D. A low melting point and which reacts slowly with water

[1 mark]

#### **Question 8**

A student opens a freezer in their lab to remove a test tube containing an oxide of a Period 3 element. The oxide is a solid and forms a solution with a low pH when dissolved in water.

Identify the element.

A. S

B. AI EXAM PAPERS PRACTICE

D. Mg

[1 mark]

#### **Question 9**

An element Z has the same oxidation state as a common iron ion but the Z ion has the same number of electrons as Ne . An oxide of element Z reacts with a strong acid to produce a chloride salt but does not dissolve in water.

What is the correct identity of element Z?



- A. Magnesium
- B. Silicon
- C. Sodium
- D. Aluminium

[1 mark]

#### **Question 10**

X,Y and Z represent different halogens. The table shows the results of nine experiments in which aqueous solutions of  $X_2$ ,  $Y_2$  and  $Z_2$  were separately added to separate aqueous solutions containing  $X^-$ ,  $Y^-$  and  $Z^-$  ions.

|                     | X <sup>-</sup> (aq) | Y- (aq)     | Z- (aq)     |
|---------------------|---------------------|-------------|-------------|
| X <sub>2</sub> (aq) | no reaction         | no reaction | no reaction |
| Y <sub>2</sub> (aq) | X₂ formed           | no reaction | Z₂ formed   |
| Z₂ (aq)             | X₂ formed           | no reaction | no reaction |

What is the correct order to show the decreasing strength of the ions X<sup>-</sup>, Y<sup>-</sup> and Z<sup>-</sup> as reducing agents?

A.  $X^- > Y^- > Z^-$ 

B.  $X^- > Z^- > Y^-$ 

C.  $Y^- > Z^- > X^-$ 

D.  $Z^- > X^- > Y^-$ 

[1 mark]