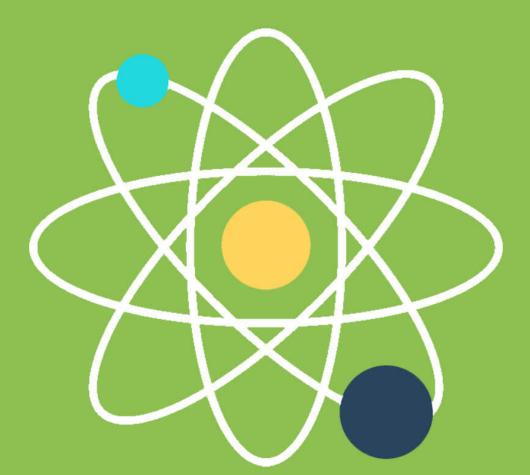


Boost your performance and confidence with these topic-based exam questions


Practice questions created by actual examiners and assessment experts

Detailed mark schemes

Suitable for all boards

Designed to test your ability and thoroughly prepare you

3.2 Oxides, Group 1 & Group 17

IB Chemistry - Revision Notes

www.exampaperspractice.co.uk

3.2.1 Periodic Trends: Oxides Across a Period

Oxides

Oxides across a period

- The **acid-base** character of the oxides provides evidence of chemical trends in the periodic table
- The broad trend is that oxides change from **basic** through **amphoteric** to **acidic** across a period
- Aluminium oxide is **amphoteric** which means that it can act both as a base (and react with an acid such as HCI) and an acid (and react with a base such as NaOH)

Acidic & Basic Nature of the Period 3 Oxides

Period 3 oxide	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P₄O ₁₀	SO₂, SO₃
Acid/base nature	Basic	Basic	Amphoteric	Acidic	Acidic	Acidic

The acidic and basic nature of the Period 3 elements can be explained by looking at their structure, bonding and the Period 3 elements' electronegativity

Structure, Bonding & Electronegativity of the Period 3 Elements Table

Copyright © 2024 Exam Papers Practice

Period 3 oxide	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO₂, SO₃		
Relative melting point	High	High	Very high	Very high	Low	Low		
Chemical bonding	lonic	lonic	lonic (with some degree of covalent	Covalent	Covalent	Covalent		
Structure	Giant ionic	Giant ionic	Giant ionic	Giant covalent	Simple molecular	Simple molecular		
Element	Na	Mg	AL	Si	Р	s	сι	0
Electronegativity	0.9	1.2	1.5	1.8	2.1	2.5	3.0	3.5

- The difference in electronegativity between oxygen and Na, Mg and Al is the largest
- Electrons will therefore be transferred to oxygen when forming oxides giving the oxide an ionic bond
- The oxides of Si, P and S will share the electrons with the oxygen to form covalently bonded oxides
- The oxides of Na and Mg which show purely ionic bonding produce alkaline solutions with water as their oxide ions (O²⁻) become hydroxide ions (OH⁻):

O^{2−}(aq) + H₂O(I) → 2OH[−](aq)

Copyright

- © 2014 Theroxides of **P** and **S** which show purely **covalent bonding** produce **acidic** solutions with water because when these oxides react with water, they form an acid which donates **H**⁺ ions to water
 - Eg. SO₃ reacts with water as follows:

$SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq)$

• The H₂SO₄ is an acid which will donate an H⁺ to water:

 $H_2SO_4(aq) + H_2O(I) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$

😧 Exam Tip

Only examples of general trends across periods and groups are required, but you should be able to link trends in ionization energy, electron affinity and electron egativity with trends in chemical character such as the nature of the oxides and metallic/non-metallic behaviour.

Oxides reacting with Water

• The pH changes for the reactions of the oxides with water can be explained by reference to the following equations

Reactionof	Oxides with Water
------------	-------------------

	Oxide	Chemical equation	рН	
	Na ₂ O	$Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$	14 (strongly alkaline)	
	MgO	$MgO(s) + H_2O(l) \rightarrow Mg(OH)_2(aq)$	10 (weakly alkaline)	
	P ₄ O ₁₀	$P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(aq)$	2 (strongly acidic)	
Copyright	NO ₂	$2NO_2(aq) + H_2O(l) \rightarrow HNO_3(aq) + HNO_2(aq)$	(strongly acidic)	cice
© 2024 Ex	am Papers I SO ₂ , SO ₃	Practice $SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$ $SO_3(g) + H_2O(l) \rightarrow H_2SO_4(aq)$	1 (strongly acidic)	

- The pattern here is that:
 - The metallic oxides form hydroxides when they react with water
 - The non-metallic oxides form oxoacids when they react with water

😧 Exam Tip

You should learn how to construct these equations exactly as they are specifically mentioned in the syllabus

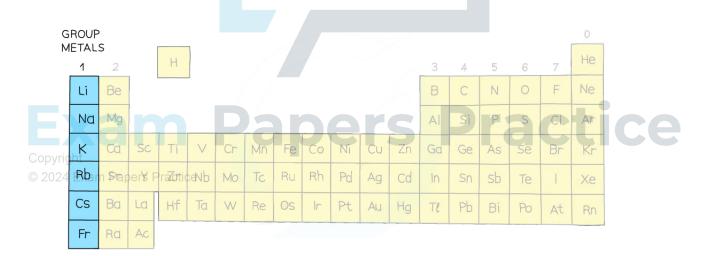
Making Predictions

- The position of an element in the periodic table can be used to predict and explain its **metallic** and **non-metallic** behaviour
- This is illustrated by the bonding of the oxides
- Metal and non-metal elements generally form ionic compounds so the elements Na to AI have giant ionic structures
- The oxides become more **ionic** as you go **down the group** as the **electronegativity decreases**
- The oxides become less ionic as you go across a period as the electronegativity increases
- The oxides of non-metals such as **S**, **N** and **P** form **molecular covalent compounds**
- Sometimes you may be asked to make predictions about oxides that are not specifically mentioned in the syllabus but you should be able deduce their properties if you understand the patterns outlined above, as the following example shows:

© 2024 ExThe correct option is D.

CO₂ and SO₃ will produce a pH below 7 as they are non-metal oxides. CaO and Na₂O will produce a pH above 7 as they are metal oxides; however the pH is decreasing as you go across a period, so Na₂O will have a higher pH than CaO

3.2.2 Periodic Trends: Group 1 – The Alkali Metals


Alkali Metals

The group 1 metals

- The group 1 metals are called the **alkali metals** because they form **alkaline solutions** with high pH values when reacted with water
- Group 1 metals are lithium, sodium, potassium, rubidium, caesium and francium
- They all end in the electron configuration ns¹

Physical properties of the group 1 metals

- The group 1 metals:
 - Are soft and easy to cut, getting **softer** and **denser** as you move down the group
 - Have shiny silvery surfaces when freshly cut
 - Conduct heat and electricity
 - They all have **low** melting points and **low** densities and the melting point **decreases** going down the group as the atomic radius increases and the metallic bonding gets weaker

The alkali metals are located on the left of the periodic table in the first column of the s block

Chemical properties of the Group 1 metals

• They react readily with oxygen and water vapour in air so they are usually kept under **oil** to stop them from reacting

• Group 1 metals will react similarly with water, reacting vigorously to produce an **alkaline** metal hydroxide solution and **hydrogen** gas

The Reactions of Group 1 Metals and Water

ELEMENT	REACTION
LITHIUM	2Li (s) + 2H ₂ O(l) → 2LiOH(aq) + H ₂ (g) – REACTION SLOWER THAN WITH SODIUM, BUBBLES OF H2 GAS – LITHIUM DOESN'T MELT DUE TO ITS HIGH M.P.
SODIUM	2Na(s) + 2H ₂ O(L) → 2NaOH(aq) + H ₂ (g) - BUBBLES OF H ₂ GAS, MELTS INTO A SHINY BALL THAT DASHES AROUND THE SURFACE - NAOH FORMED WHICH PRODUCES A HIGHLY ALKALINE SOLUTION
POTASSIUM	2K(s) +2H ₂ O(l) → 2KOH(aq) + H ₂ (g) – REACTS MORE VIOLENTLY THAN SODIUM, BUBBLES OF H ₂ GAS, MELTS INTO A SHINY BALL THAT DASHES AROUND THE SURFACE – HOT ENOUGH TO BURN H ₂ WHICH FORMS LILAC FLAME

• Test yourself on this example question: **Nam Papers Practice**

Copyright © 2024 Exam Papers Practice

ple			
What would you see when sodium is added to water?			
I. a gas is given off			
II. the temperature of the water increases			
III. a clear, colourless solution is formed			
A. I and II only			
B . l and III only			
on is D .			
i			

 Bubbles of hydrogen gas are given off. The sodium melts, so that tells you it is an exothermic reaction and the product, sodium hydroxide, is very soluble so a clear, colourless solution would be formed.

ractice

Alkali metals with halogens

All the alkali metals react vigorously with the halogens in group 17

The reaction results in an alkali metal halide salt

Copyright

 $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$

- The reaction becomes increasingly vigorous going down group 1 because
 - The atoms of each element get larger going down the group
 - This means that the ns¹ electron gets further away from the nucleus and is shielded by more electron shells.
 - The further an electron is from the positive nucleus, the easier it can be lost in reactions

Can you apply what you have just learned? Check out the following example question:

Worked example

Which pair of elements has the most vigorous reaction?

- A. Cs and I
- **B**. Li and Cl
- $\boldsymbol{C}.$ Cs and F
- **D**. Li and F

Answer:

The correct option is C.

 You need to choose the lowest element in group 1 and the highest element in group 17 to predict the most vigorous reaction as reactivity increases going down group 1, but decreases going down group 17

Exam Papers Practice

© 2024 Exam Papers Practice

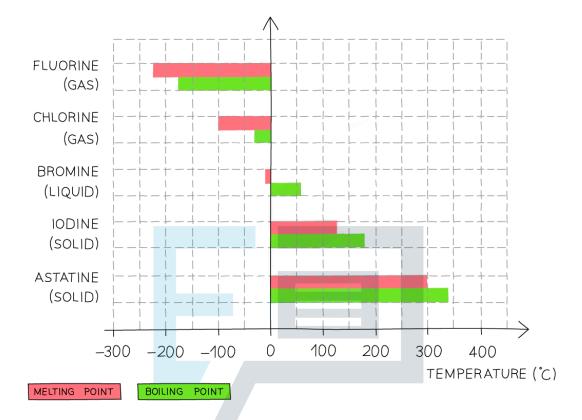
3.2.3 Periodic Trends: Group 17 – The Halogens

Halogens

The halogens

- These are the group 17 non-metals that are **poisonous** and include fluorine, chlorine, bromine, io dine and astatine
- Halogens are diatomic, meaning they form molecules of two atoms
- All halogens have seven electrons in their outer shell
- They form halide ions by gaining one more electron to complete their outer shells

HALOGEN PHYSICAL STATE AT COLOUR COLOUR IN **ROOM TEMPERATURE** SOLUTION FLUORINE YELLOW GAS ____ CHLORINE GAS GREEN-BLUE PALE GREEN BROMINE LIQUID **RED-BROWN (READILY** ORANGE EVAPORATES TO FORM A BROWN GAS) IODINE SOLID BLACK (SUBLIMES TO FORM A DARK BROWN PURPLE GAS)


Colours and States at Room Temperature

Con Trends in physical properties of the halogens

© 2 Meltingpointers Practice

• The density and melting and boiling points of the halogens increase as you go down the group

rs Practice Explaining the trend in reactivity in Group VII

- Copyright Reactivity of group 17 non-metals **decreases** as you go down the group
 - The halogens electron configurations all end in ns²np⁵
 - Each outer shell contains seven electrons and when they react, they will need to gain one outer electron to get a full outer shell of electrons
 - Going down the group, the electron affinity decreases and the atomic radius increases
 - As you go down group 17, the number of shells of electrons increases so shielding also increases
 - This means that the outer electrons are **further** from the nucleus so there are weaker electrostatic forces of attraction that attract the extra electron needed
 - The electron is attracted less readily, so the lower down the element is in Group 17 the less reactive it is

Reaction of the halogens with halide ions in displacement reactions

- A halogen **displacement** occurs when a **more** reactive halogen displaces a **less** reactive halogen from an aqueous solution of its halide
- The reactivity of group 17 non-metals increases as you move up the group
- Out of the 3 halogens, chlorine, bromine and iodine, chlorine is the most reactive and iodine is the least reactive

Aqueous Solution Colour of Halogens

AQUEOUS SOLUTION	COLOUR		
CHLORINE	VERY PALE GREEN, BUT USUALLY APPEARS COLOURLESS AS IT IS VERY DILUTE		
BROMINE	ORANGE BUT WILL TURN YELLOW WHEN DILUTED		
IODINE	BROWN		

Halogen displacement reactions

Chlorine and bromine

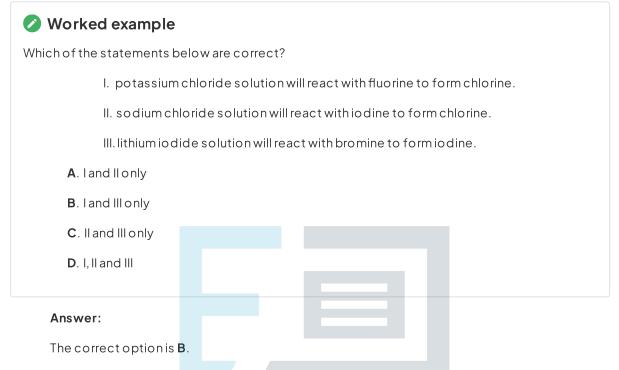
- If you add chlorine solution to colourless potassium bromide solution, the solution becomes orange as bromine is formed
- Chlorine is **above** bromine in group 17 so it is more reactive
- Chlorine will therefore **displace** bromine from an aqueous solution of a metal bromide

 $2\text{KBr}(\text{aq}) + \text{Cl}_2(\text{aq}) \rightarrow 2\text{KCI}(\text{aq}) + \text{Br}_2(\text{aq})$

potassium bromide + chlorine \rightarrow potassium chloride + bromine

Copyright

© 2 Bromine and io dine ctice


- Bromine is **above** iodine in group 17 so it is **more** reactive
- Bromine will therefore **displace** iodine from an aqueous solution of a metal iodide

 $Br_2\left(l\right) + 2Nal\left(aq\right) \rightarrow 2NaBr\left(aq\right) + l_2\left(aq\right)$

 $bromine + sodium \, lodide \, {\rightarrow} \, sodium \, bromide \, {+} \, iodine$

Test yourself on halogen displacements:

- Fluorine will displace chlorine as it is higher up in the group and bromine will displace iodine for the same reason.
- Iodine is below chlorine so cannot displace chlorine from sodium chloride

Exam Papers Practice