

3.2 Geometry of 3D Shapes

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Maths Al SL Students of other boards may also find this useful

Question 1 a) Circle circumference formula

$$C = 2\pi \Gamma$$
 (in formula booklet)
 $\Gamma = \frac{1}{2} \text{ height}$
 $\Gamma = \frac{1}{2} (2286)$
 $\Gamma = 1143$
Sub Γ into formula.
 $C = 2\pi (1143)$
 $C = 7181.68...$
 $C = 7180 (3st)$
 $C = 7.18 \times 10^3 \text{ mm}$

b) Surface area of a sphere formula

Exame 4 mm a pers (in formula booklet) Lice

(in formula booklet)

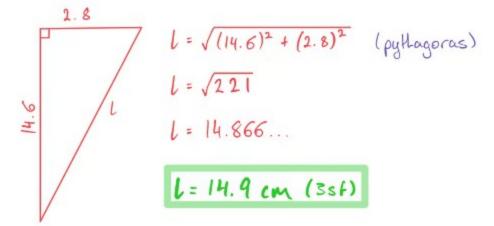
r= 1143

Question 2 a) Volume of a right circular cone

$$V = \frac{1}{3} \pi r^2 k$$

(in formula booklet)

Example Papers Practice


Sub V and r into formula and

rearrange for h.

$$|20 = \frac{1}{3} \pi (2.8)^2 h$$

b) Notice the right-angled triangle.

c) Curved surface area of a cone formula

A =
$$\pi r l$$
 (in formula booklet)
 $r = 2.8$ $l = 14.9$
Sub r and l into formula.

A= T (2.8)(14.9)

A = 131.067 ...

Examination Practice

$$V = 80$$
 $r = \frac{6.7}{2} = 3.35$

Sub in V and r into formula and rearrange for h.

$$h = \frac{80}{\pi (s.ss)^2}$$

6) Volume of a hemisphere formula

$$V = \frac{2}{3} \pi r^3$$

(Vsphere)

Example of a hemsphere is half the tice volume of a sphere with the same radius.

$$V = 80 \times \frac{1}{4} = 20$$

Sub V into formula and rearrange for r.

$$20 = \frac{2}{3} \pi r^3$$

$$C = \sqrt{\frac{20}{\frac{2}{3}\pi}}$$

(in formula booklet)

i)
$$0 = 62$$
 $r = 11.4$

$$l = \frac{62}{360} \times 2\pi (11.4)$$

$$l = \frac{298}{360} \times 2\pi (11.4)$$

(an Papers Practice
b) Sector area formula

$$A = \frac{\Theta}{360} \times \pi r^2$$

$$r = 11.4$$

Sub O and r into formula.

$$A = \frac{62}{360} \times \pi (11.4)^2$$

$$V = \frac{0}{360} \times \pi r^2 \times l$$
sector area

Sub O, r and I into formula.

$$V = \frac{298}{360} \times \pi (11.4)^2 \times 110$$

Question 5 a Surface area of a cylinder formula

*A = 2πrh + 2πr² Exam surface area 2 rencular Practice

$$C = \frac{28}{2} = 14$$
 $h = 37$

Sub r and h into formula.

$$A = 2\pi (14)(37) + 2\pi (14)^2$$

A= 1428TT

A=4486.19...

A = 4490 cm2 (3sf)

* Curved surface area and circle area formula are in the formula booklet.

b) Surface area of a cuboid formula

$$A = 2 lw + 2 lh + 2 wh$$
 $A = 4490 w = 28 h = 37 l = x$

Sub A, w and h into formula and solve for x on your GDC.

 $4490 = 2 \times (28) + 2 \times (37) + 2(28)(37)$
 $x = 18.6 cm$

Question 6 a) Volume of a sphere formula

 $V = \frac{H}{3} \pi r r^3$ (in formula booklet)

 $r = 1.84$

Sub (into formula.) Practice

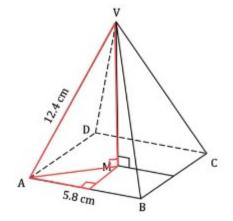
 $V = \frac{H}{3} \pi r (1.84)^{3}$
 $V = 26.094...$

Exam Papers Practice

b) Let
$$Vc = cooled volume and
c = cooled radius.

Method 1

0.99 = $\frac{Vc}{V} = \frac{4\pi}{8\pi} \frac{\pi c^3}{(1.84)^3}$
 $c = \frac{30.99}{1.84} \times 1.84$
 $c = 1.8338...$


Method 2

 $Vc = 26.1 \times 0.99$$$

Vc =
$$\frac{16.1 \times 0.99}{25.8 \text{ m}^3}$$

25.8 = $\frac{4}{3}\pi$ (c= 1.8338...

Exam Reson Practice

Question 7

a) Notice the right-angled triangles.

First, we need to find AM.

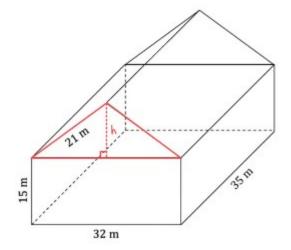
$$AM = \sqrt{2.9^2 + 2.9^2} \quad \left(\frac{5.8}{2} = 2.9\right)$$

$$AM = \sqrt{16.82} \quad (AM^2 = 16.82)$$

Use AM to find VM.

b) Volume of a right pyramid formula

Exams Papers Practice


where A is the area of the base.

Sub A and h into formula.

$$V = \frac{1}{3} (5.8^2)(11.7)$$

V = 131.196

Area = 2 (warehouse ends) + 2 (warehouse sides) + 2 (roof slanted sides) + 2 (roof ends)

Roof ends are isosceles triangles.

Area of a triangle formula

(in formula booklet)

b is the base, h is the perpendicular height

Exam Papers Praction (pyllogorus)

Sub b and h into formula and sum all the surfaces.

A= 2(15×32) + 2(15×35) + 2(35 × 21)
+ 2(
$$\frac{1}{2}$$
 × 32 × $\sqrt{21^2 - 16^2}$)

A = 3915. 247 ...

A = 3915 m2 (neurest m2)

a) Distance between two points formula
$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (in formula booklet)

A(11,14,4) S(0,0,0)

Sub A and S into formula.

 $d_A = \sqrt{11^2 + 14^2 + 4^2}$
 $d_A = \sqrt{332}$
 $d_A = 18.2 \text{ km}$ (3sf)

B(4,17,3) S(0,0,0)

Sub B and S into formula.

 $d_B = \sqrt{4^2 + 17^2 + 3^2}$
 $d_B = \sqrt{314}$
 $d_B = 17.7 \text{ km}$ (3sf)

There A is farthest from Sharp airport.

Exambles and subjective as all values are zero.

b) Distance between two points formula

$$d = \sqrt{(z_1 - z_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (in formula booklet)
$$A(11, 14, 4) \qquad B(4, 17, 3)$$
Sub A and B into formula.
$$d = \sqrt{(11 - 4)^2 + (14 - 17)^2 + (4 - 3)^2}$$

$$d = \sqrt{59}$$

c) Distance between two points formula

$$d = \sqrt{(2x_1 - 2x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} \quad (\text{in formula booklet})$$

$$A(-8, 20, 5) \quad S(0, 0, 0) \quad K(-15, 1, 0)$$

Distance to Sharp airport

Sub A and S into formula.

$$d_s = \sqrt{(-6)^2 + 20^2 + 5^2}$$

$$d_s = \sqrt{489}$$

$$d_s = 22.1 \text{ km (3sf)}$$

Distance to Kit airport

Sub A and K into formula.

$$d_k = \sqrt{(-8 - (-15))^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{435}$$

$$d_k = \sqrt{435}$$

Action Cities

$$d_k = \sqrt{(-6)^2 + 20^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt{(-6)^2 + (20 - 1)^2 + 5^2}$$

$$d_k = \sqrt$$