EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.2 Geometry of 3D Shapes

AA SL

3.2.1 3D Coordinate Geometry

3D Coordinate Geometry

How does the 3D coordinate system work?

- In three-dimensional space we can label where any object is using the $x-y$-zcoordinate system
- In the 3D cartesian system, the x-and y-axes usually represent lateral s pace (length and width) and the z-axis represents vertical height

What can we do with 3D coordinates?

- If we have two points with coordinates $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ then we should be able to find:
- The midpoint of the two points
- The distance between the two points
- If the coordinates are labelled A and B then the line segment between them is written with the notation [AB]

How do Ifind the midpoint of two points in 3D?

- The midpoint is the average (middle) point
- It can be found by finding the middle of the x-coordinates and the middle of the y coordinates
- The coordinates of the midpoint will be

- This is given in the formula booklet, you do not need to remember it

How do Ifind the distance between two points in 3D?

- The distance between two points with coordinates $\left(\left(x_{1}, y_{1}, z_{1}\right)\right.$ and $\left(x_{2}, y_{2}, z_{2}\right)$ can be found using the formula

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

- This is given in the formula booklet, you do not need to remember it

Exam Papers Practice

Worked example

The points A and B have coordinates $(-2,1,5)$ and $(4,-3,2)$ respectively.
i) Calculate the distance of the line segment $A B$.

Formula for the distance of a line
segment:

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

$$
\begin{array}{rrr}
A:(-2,1,5) & B:(4,-3,2) \\
x_{1} & y_{1} & z_{1}
\end{array}
$$

Substitute:

$$
\begin{aligned}
d & =\sqrt{(-2-4)^{2}+(1-(-3))^{2}+(5-2)^{2}} \\
& =\sqrt{(-6)^{2}+4^{2}+3^{2}} \\
& =\sqrt{36+16+9} \\
& =\sqrt{61}
\end{aligned}
$$

Exam

$$
d=7.81 \text { units }(3 \mathrm{sf})
$$

Copyright ii) Find the mid po int of $[A B]$.
© 2024 Exam Papers Practice

Exam Papers Practice

Formula for the midpoint of a line segment：

$$
\text { MP }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)^{\begin{array}{c}
\text { in formula } \\
\text { bork et }
\end{array}}
$$

$$
\begin{array}{rlrl}
A:(-2,1,5) & B:(4,-3,2) \\
x_{1} & y_{1} & i & z_{1} \\
x_{2}^{\prime} & y_{2} & 1
\end{array}
$$

Substitute：

$$
\begin{aligned}
M P= & \left(\frac{-2+4}{2}, \frac{1+(-3)}{2}, \frac{5+2}{2}\right) \\
= & \left(\frac{2}{2},-\frac{2}{2}, \frac{7}{2}\right) \\
& M P=(1,-1,3.5)
\end{aligned}
$$

3.2.2 Volume \& Surface Area

Volume of 3D Shapes

What is volume?

- The volume of a 3D shape is a measure of how much 3D space it takes up
- A 3D shape is also called a solid
- Youneed to be able to calculate the volume of a number of common shapes

Howdolfind the volume of cuboids, prisms and cylinders?

- A prism is a 3-D shape that has two identical base shapes connected byparalleledges
- A prism has the s ame base shape all the way through
- A prism takes its name from its base
- To find the volume of any prism use the formula:

Volume of a prism $=A h$

- Where \boldsymbol{A} is the area of the cross section and \boldsymbol{h} is the base height
- h could also be the length of the prism, depending on how it is oriented
- This is in the formula booklet in the prior learning section at the beginning
- The base could be any shape so as long as youknow its area and length you can calculate the volume of any prism

- Note two special cases:
- To find the volume of a cuboid use the formula:

$$
\begin{aligned}
& \text { Volume of a cuboid }=\text { length } \times \text { width } \times \text { height } \\
& \qquad V=1 w h
\end{aligned}
$$

- The volume of a cylinder can be found in the same way as a prismusing the formula:

Volume of a cylinder $=\pi r^{2} h$

- where r is the radius, h is the height (or length, depending on the orientation
- Note that a cylinderis technic ally not a prism as its base is not a polygon, howeverthe method forfinding its volume is the same
- Both of these are in the formula booklet in the prior learning section

How do Ifind the volume of pyramids and cones?

- In a right-pyramid the apex(the jo ining point of the triangular faces) is vertic ally above the centre of the base
- The base can be anyshape but is usually a square, rectangle or triangle
- To calculate the volume of a right -pyramid use the formula

$$
V=\frac{1}{3} A h
$$

- Where A is the area of the base, h is the height
- Note that the height must be vertical to the base
- A right cone is a circular-based pyramid with the vertical height joining the apex to the centre of the circular base
- To calculate the volume of a right-cone use the formula

$$
V=\frac{1}{3} \pi r^{2} h
$$

- Where r is the radius, h is the height
- These formulae are both given in the formula booklet

How do Ifind the volume of a sphere?

- To calculate the volume of a sphere use the formula

$$
V=\frac{4}{3} \pi r^{3}
$$

- Where ris the radius
- the line segment from the centre of the sphere to the surface
- This formula is given in the formula booklet

(-) Exam Tip

- Rememberto make use of the formula booklet in the exam as all the volume formulae you need will be here
- Formulae for basic 3D objects (cuboid, cylinder and prism) are in the prior learning section
- Formulae for other3D objects (pyramid, cone and sphere) are in the Topic 3: Geometry section

Exam Papers Practice

Worked example

A dessert can be modelled as a right-cone of radius 3 cm and height 12 cm and a scoop of icecream in the shape of a sphere of radius 3 cm . Find the total volume of the ice-cream and cone.

Volume of a sphere: $V=\frac{4}{3} \pi r^{3}$ (In formula booklet)

Substitute: $r=3 \Rightarrow V=\frac{4}{3} \pi \times 3^{3}$ $=36 \pi$

Volume of a right cone: $V=\frac{1}{3} \pi r^{2} h$ (In formula booklet)

$$
\text { Substitute: } \begin{aligned}
r=3, \quad h=12 \Rightarrow \begin{aligned}
V & =\frac{1}{3} \pi(3)^{2}(12) \\
& =36 \pi
\end{aligned}
\end{aligned}
$$

$$
\text { Total Volume }=72 \pi \mathrm{~cm}^{3}
$$

$$
\text { Total Volume }=226 \mathrm{~cm}^{3}(3 \mathrm{sf})
$$

Surface Area of 3D Shapes

What is surface area?

- The surface area of a 3D shape is the sum of the areas of all the faces that make up a shape
- A face is one of the flat or curved surfaces that make up a 3D shape
- It often helps to considera3D shape in the form of its 2D net

How do I find the surface area of cuboids, pyramids and prisms?

- Anyprisms and pyramids that have polygons as their bases have only flat faces
- The surface area is simply found by ad ding up the areas of these flat faces
- Drawing a 2D net will help to see which faces the 3D shape is made up of

How do I find the surface area of cylinders, cones and spheres?

- Cones, cylinders and spheres all have curved faces so it is not always as easy to see their shape
- The net of a cylinder is made up of two identical circles and a rectangle
- The rectangle is the curved surface area and is harderto id entify
- The length of the rectangle is the same as the circumference of the circle
- The area of the curved surf ace area is

$$
A=2 \pi r h
$$

- where r is the radius, h is the height
- This is given in the formula book in the prior learning section
- The area of the total surface area of a cylinder is

$$
A=2 \pi r h+2 \pi r^{2}
$$

- This is not given in the formula book, howeverit is easy to put together as both the area of a circle and the area of the curved surface area are given
- The net of a cone consists of the circular base along with the curved surface area
- The area of the curved surface area is

$$
A=\pi r l
$$

- Where r is the radius and /is the slant height
- This is given inthe formula book
- Be careful not to confuse the slant height, l, with the vertic al height, h
- Note that r, hand/will create a right-triangle with/as the hypo tenuse
- The area of the total surface area of a cone is

$$
A=\pi r l+\pi r^{2}
$$

Page 7 of 11

- This is not given in the formula book, however it is easy to put to gether as both the area of a circle and the area of the curved surface area are given
- To find the surface area of a sphere use the formula

$$
A=4 \pi r^{2}
$$

- where r is the radius (line segment from the centre to the surface)
- This is given in the formula booklet, you do not have to remember it

- Exam Tip

- Remember to make use of the formula booklet in the exam as all the area formulae you need will be here
- Formulae for basic 2D shapes (parallelogram, triangle, trapezoid, circle, curved surface of a cylinder) are in the prior learning section
- Formulae for other 2D shapes (curved surface area of a cone and surface area of a sphere) are in the Topic 3: Geometry section

© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

In the diagram below $A B C D$ is the square base of a right pyramid with vertex V. The centre of the base is M. The sides of the square base are 3.6 cm and the vertical height is 8.2 cm .

© 2024 Exam Papers Practice
i) Use the Pythago rean Theorem to find the distance VN.

Exam Papers Practice

Sketch the triangle MNV:

ii) Calculate the area of the triangle ABV.

Area $\triangle A B V=$ area $\triangle B C V$
Sketch $\triangle B C V$:

Area of a triangle $=\frac{1}{2} b h$
Substitute $b=3.6, h=\sqrt{70.48}$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(3.6)(\sqrt{70.48}) \\
& =15.111 \ldots \mathrm{~cm}^{2}
\end{aligned}
$$

Area $\triangle A B V=15.1 \mathrm{~cm}^{2}$
iii) Find the surface area of the right pyramid.

Considering the net may help:

$$
\begin{aligned}
\begin{aligned}
\text { Surface } \\
\text { area }
\end{aligned} & =\begin{array}{c}
\text { area } \\
\text { square }
\end{array}+4\binom{\text { area }}{\text { triangle }} \\
S A & =3.6^{2}+4(15.111 \ldots) \\
& =73.405 \ldots \mathrm{~cm}^{2} \\
S A & =73.4 \mathrm{~cm}^{2}(3 \mathrm{sf})
\end{aligned}
$$

