

3.11 Vector Planes

Contents

- ★ 3.11.1 Vector Equations of Planes
- ★ 3.11.2 Intersections of Lines & Planes
- ✗ 3.11.3 Angles Between Lines & Planes
- ✗ 3.11.4 Shortest Distances with Planes

TRUETIS Reserved

3.11.1 Vector Equations of Planes

Equation of a Plane in Vector Form

How do I find the vector equation of a plane?

- A plane is a flat surface which is two-dimensional
 - Imagine a flat piece of paper that continues on forever in both directions
- A plane in often denoted using the capital Greek letter Π
- The vector form of the equation of a plane can be found using two direction vectors on the plane
 - The direction vectors must be
 - parallel to the plane
 - not parallel to each other
 - If both direction vectors lie on the plane then they will intersect at a point
- The formula for finding the **vector equation** of a plane is
 - $r = a + \lambda b + \mu c$
 - Where *r* is the **position vector** of any point on the plane
 - *a* is the **position vector** of a known point on the plane
 - **b** and **c** are two **non-parallel direction** (displacement) **vectors** parallel to the plane
 - λ and μ are scalars
 - The formula is given in the formula booklet but you must make sure you know what each part means
- As a could be the position vector of any point on the plane and b and c could be any non-parallel direction vectors on the plane there are infinite vector equations for a single plane

How do I determine whether a point lies on a plane?

• Given the equation of a plane $\mathbf{r} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix} + \mu \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix}$ then the point \mathbf{r} with position vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is on the plane if there exists a value of λ and μ such that

vector
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$
 is on the plane if there exists a value of λ and μ such that
• $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \mu \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$

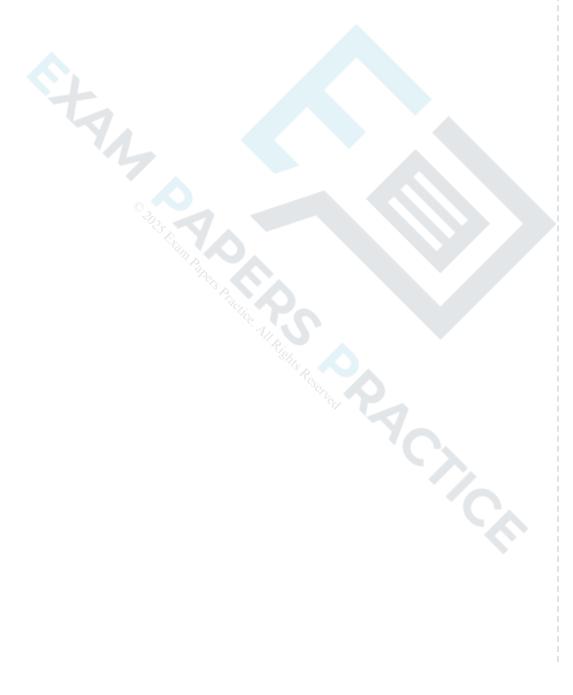
• This means that there exists a single value of λ and μ that satisfy the three **parametric** equations:

•
$$x = a_1 + \lambda b_1 + \mu c_1$$

• $y = a_2 + \lambda b_2 + \mu c_2$

 $= z = a_3 + \lambda b_3 + \mu c_3$

- Solve two of the equations first to find the values of λ and μ that satisfy the first two equation and then check that this value also satisfies the third equation
- If the values of λ and μ do not satisfy all three equations, then the point **r** does not lie on the plane



For more help, please visit www.exampaperspractice.co.uk

Worked example

The points A, B and C have position vectors $\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\mathbf{b} = \mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$, and $\mathbf{c} = 4\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ respectively, relative to the origin O.

(a) Find the vector equation of the plane.

Start by finding the direction vectors
$$\overrightarrow{AB}$$
 and \overrightarrow{AC}
 $\overrightarrow{AB} = \underline{b} - \underline{a} = \begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ -5 \end{pmatrix}$
 $\overrightarrow{AC} = \underline{c} - \underline{a} = \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$
All three points lie on the plane, so choose the position
vector of one point, e.g. \overrightarrow{OA} , to use as 'a' in the vector
equation of a plane formula.
Check that \overrightarrow{AB} and \overrightarrow{AC} are not parallel.
 $r = \underline{a} + \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$
 $\boxed{\Gamma - \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -5 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}}$ (This is one of many)
correct answers

(b) Determine whether the point D with coordinates (-2, -3, 5) lies on the plane.

Let D have position vector $\underline{d} = \begin{pmatrix} -2 \\ -3 \\ 5 \end{pmatrix}$, then the point D Lies on the plane if there exists a value of λ and μ for which: $\begin{pmatrix} -2 \\ -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -4 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$

Find the parametric equations:

 $-2 = 3 - 2\lambda + \mu \Rightarrow \mu - 2\lambda = -5 \quad (1) solve two equations$ $-3 = 2 - 4\lambda - 3\mu \Rightarrow 3\mu + 4\lambda = 5 \quad (2) for \lambda and \mu.$ $5 = -1 + 5\lambda + 4\mu \Rightarrow 4\mu + 5\lambda = 6 \quad (3)$

Find the value of λ and μ from two equations: 20: $2\mu - 4\lambda = -10$

+ (2):
$$3\mu + 4\lambda = 5$$

 $5\mu = -5$
 $\mu = -1$ sub into (1): $(-1) - 2\lambda = -5$
 $\lambda = 2$

Check to see if λ and μ satisfy the third equation: 4(-1)+5(2) = -4 + 10 = 6 \checkmark

The point D lies on the plane.

Equation of a Plane in Cartesian Form

How do I find the vector equation of a plane in cartesian form?

- The cartesian equation of a plane is given in the form
 - ax + by + cz = d
 - This is given in the formula booklet
- A normal vector to the plane can be used along with a known point on the plane to find the cartesian equation of the plane
 - The normal vector will be a vector that is perpendicular to the plane
- The scalar product of the normal vector and any direction vector on the plane will the zero
 - The two vectors will be perpendicular to each other
 - The direction vector from a fixed-point A to any point on the plane, R can be written as r a
 - Then $\mathbf{n} \cdot (\mathbf{r} \mathbf{a}) = 0$ and it follows that $(\mathbf{n} \cdot \mathbf{r}) (\mathbf{n} \cdot \mathbf{a}) = 0$
- This gives the equation of a plane using the normal vector:
 - n·r=a·n
 - Where r is the position vector of any point on the plane
 - a is the **position vector** of a known point on the plane
 - n is a vector that is normal to the plane
 - This is given in the formula booklet
- If the vector **r** is given in the form $\begin{vmatrix} y \end{vmatrix}$ and **a** and **n** are both known vectors given in the form

and b then the Cartesian equation of the plane can be found using:

- $\mathbf{n} \cdot \mathbf{r} = ax + by + cz$
- $\mathbf{a} \cdot \mathbf{n} = a_1 a + a_2 b + a_3 c$
- Therefore $ax + by + cz = a_1a + a_2b + a_3c$
- This simplifies to the form ax + by + cz = d

How do I find the equation of a plane in Cartesian form given the vector form?

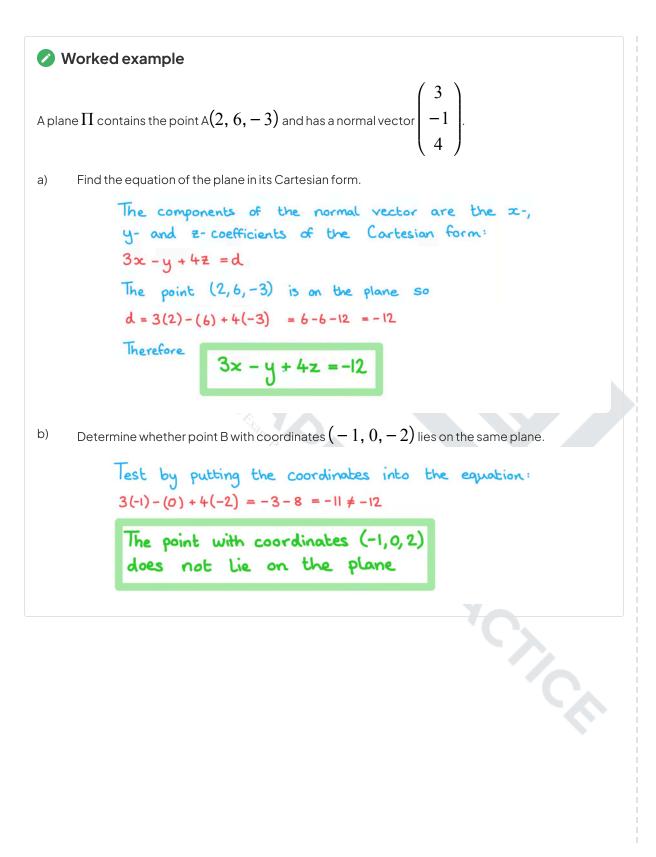
- The Cartesian equation of a plane can be found if you know
 - the normal vector and
 - a point on the plane
- The vector equation of a plane can be used to find the normal vector by finding the vector product of the two direction vectors
 - A vector product is always perpendicular to the two vectors from which it was calculated
- The vector **a** given in the vector equation of a plane is a **known point** on the plane

- Once you have found the normal vector then the point *a* can be used in the formula *n* · *r* = *a* · *n* to find the equation in Cartesian form
- To find ax + by + cz = d given $r = a + \lambda b + \mu c$:

C ROSS Krein Die

• Let
$$\boldsymbol{n} = \begin{pmatrix} \boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c} \end{pmatrix} = \boldsymbol{b} \times \boldsymbol{c}$$
 then $\boldsymbol{d} = \boldsymbol{n} \cdot \boldsymbol{a}$

Riellis Reserved



3.11.2 Intersections of Lines & Planes

Intersection of Line & Plane

How do I tell if a line is parallel to a plane?

- A line is parallel to a plane if its direction vector is perpendicular to the plane's normal vector
- If you know the Cartesian equation of the plane in the form ax + by + cz = d then the values of a, b, and c are the individual components of a normal vector to the plane
- The scalar product can be used to check in the direction vector and the normal vector are perpendicular
 - If two vectors are perpendicular their scalar product will be zero

How do I tell if the line lies inside the plane?

- If the line is parallel to the plane then it will either never intersect or it will lie inside the plane
 - Check to see if they have a common point
- If a line is parallel to a plane and they share any point, then the line lies inside the plane

How do I find the point of intersection of a line and a plane?

- If a line is not parallel to a plane it will intersect it at a single point
- If both the vector equation of the line and the Cartesian equation of the plane is known then this can be found by:
- STEP 1: Set the position vector of the point you are looking for to have the individual components x, y, and z and substitute into the vector equation of the line -served

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$$

• STEP 2: Find the parametric equations in terms of x, y, and z

•
$$x = x_0 + \lambda l$$

•
$$y = y_0 + \lambda m$$

$$z = z_0 + \lambda n$$

 STEP 3: Substitute these parametric equations into the Cartesian equation of the plane and solve to findλ

•
$$a(x_0 + \lambda l) + b(y_0 + \lambda m) + c(z_0 + \lambda n) = d$$

 STEP 4: Substitute this value of λ back into the vector equation of the line and use it to find the position vector of the point of intersection

• STEP 5: Check this value in the Cartesian equation of the plane to make sure you have the correct answer

Worked example

Find the point of intersection of the line
$$r = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$
 with the plane $3x - 4y + z = 8$.

Find the parametric form of the equation of the line: Let $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ then $\begin{aligned} x = 1 + 2\lambda \\ y = -3 - \lambda \\ z = 2 - \lambda \end{aligned}$ Substitute into the equation of the plane: $3(1 + 2\lambda) - 4(-3 - \lambda) + (2 - \lambda) = 8$ Solve to find λ : $3 + b\lambda + 12 + 4\lambda + 2 - \lambda = 8$ $\lambda = -1$ Substitute $\lambda = -1$ into the vector equation of the line: $r = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 - 2 \\ -3 + 1 \\ 2 + 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$ (-1, -2, 3)

C.

Intersection of Planes

How do we find the line of intersection of two planes?

- Two planes will either be **parallel** or they will intersect along a **line**
 - Consider the point where a wall meets a floor or a ceiling
 - You will need to find the **equation of the line** of intersection
- If you have the Cartesian forms of the two planes then the equation of the line of intersection can be found by solving the two equations simultaneously
 - As the solution is a vector equation of a line rather than a unique point you will see below how the equation of the line can be found by part solving the equations
 - For example:
 - 2x y + 3z = 7 (1)

$$x - 3y + 4z = 11$$
 (2)

• STEP 1: Choose one variable and substitute this variable for λ in both equations

(1)

- For example, letting $x = \lambda$ gives:
 - $2\lambda y + 3z = 7$
 - $\lambda 3y + 4z = 11$ (2)
- STEP 2: Rearrange the two equations to bring λ to one side
 - Equations (1) and (2) become
 - $y-3z=2\lambda-7$

$$3y - 4z = \lambda - 11 \tag{2}$$

STEP 3: Solve the equations simultaneously to find the two variables in terms of λ

(1)

- 3(1) (2) Gives
 - $z = 2 \lambda$
- Substituting this into (1) gives

•
$$y = -1 - \lambda$$

• STEP 4: Write the three parametric equations for x, y, and z in terms of λ and convert into the vector

equation of a line in the form
$$\begin{pmatrix} X \\ y \\ Z \end{pmatrix} = \begin{pmatrix} X_0 \\ y_0 \\ Z_0 \end{pmatrix} + \lambda \begin{pmatrix} I \\ m \\ n \end{pmatrix}$$

• The parametric equations

•
$$x = \lambda$$

•
$$y = -1 - \lambda$$

$$z=2-\lambda$$

- Become
 - $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$

AC. Cu

- If you have fractions in your direction vector you can change its magnitude by multiplying each one by their common denominator
 - The magnitude of the direction vector can be changed without changing the equation of a line
- An alternative method is to find two points on both planes by setting either x, y, or z to zero and solving the system of equations using your GDC or row reduction
 - Repeat this twice to get two points on both planes
 - These two points can then be used to find the vector equation of the line between them
 - This will be the line of intersection of the planes
 - This method relies on the line of intersection having points where the chosen variables are equal to zero

How do we find the relationship between three planes?

- Three planes could either be parallel, intersect at one point, or intersect along a line
- If the three planes have a unique point of intersection this point can be found by using your GDC (or row reduction) to solve the three equations in their Cartesian form
 - Make sure you know how to use your GDC to solve a system of linear equations
 - Enter all three equations in for the three variables x, y, and z
 - Your GDC will give you the unique solution which will be the coordinates of the point of intersection
- If the three planes do not intersect at a unique point you will not be able to use your GDC to solve the equations
 - If there are no solutions to the system of Cartesian equations then there is no unique point of intersection
- If the three planes are all **parallel** their **normal vectors** will be parallel to each other
 - Show that the normal vectors all have equivalent direction vectors
 - These direction vectors may be scalar multiples of each other
- If the three planes have no point of intersection and are not all parallel they may have a relationship such as:
 - Each plane intersects two other planes such that they form a **prism** (none are parallel)
 - Two planes are parallel with the third plane intersecting each of them
 - Check the normal vectors to see if any two of the planes are parallel to decide which relationship they have
- If the three planes intersect along a line there will not be a unique solution to the three equations but there will be a **vector equation of a line** that will satisfy the three equations
- The system of equations will need to be solved by elimination or row reduction
 - Choose one variable to substitute for λ
 - Solve two of the equations simultaneously to find the other two variables in terms of λ
 - Write x, y, and z in terms of λ in the parametric form of the equation of the line and convert into the vector form of the equation of a line

Worked example

Two planes \varPi_1 and \varPi_2 are defined by the equations:

$$\Pi_1: 3x + 4y + 2z = 7$$

 $\Pi_2: x - 2y + 3z = 5$

Find the vector equation of the line of intersection of the two planes.

STEP 1: Let $z = \lambda$, then $3x + 4y + 2\lambda = 7$ ① You can substitute any variable $x - 2y + 3\lambda = 5$ (2) here, look at the equations to see which is provided see which is easiest. STEP 2: ①: $3x + 4y = 7 - 2\lambda$ Write the two equations as simultaneous equations for ②: $x - 2y = 5 - 3\lambda$ the two remaining constants. STEP 3: Find ∞ and y in terms of λ : (1-2): $(3x+4y=7-2\lambda)$ $+(2x-4y=10-6\lambda)$ $5x = 17 - 8\lambda$ $\infty = \frac{17}{5} - \frac{8\lambda}{5}$ sub into (2) $\frac{17}{5} - \frac{8\lambda}{5} - 2y + 3\lambda = 5$ $y = \frac{7\lambda}{10} - \frac{8}{10}$ STEP 4: $x = \frac{17}{5} - \frac{8\lambda}{5}$ $y = \frac{7\lambda}{10} - \frac{4}{5}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{17}{5} \\ -\frac{4}{5} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -\frac{8}{5} \\ \frac{7}{10} \\ 1 \end{pmatrix}$ $z = \lambda$ The components of the direction vector can be multiplied by a scalar without $\Gamma = \begin{pmatrix} 17/5 \\ -4/5 \end{pmatrix}$ changing the direction. + λ

3.11.3 Angles Between Lines & Planes

Angle Between Line & Plane

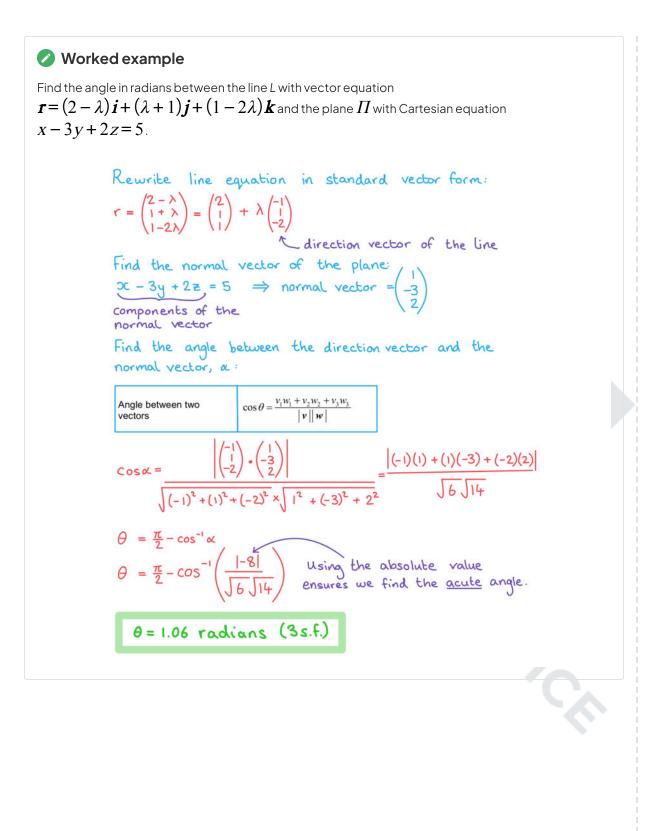
What is meant by the angle between a line and a plane?

- When you find the angle between a line and a plane you will be finding the angle between the line itself and the line on the plane that creates the smallest angle with it
 - This means the line on the plane directly under the line as it joins the plane
- It is easiest to think of these two lines making a right-triangle with the normal vector to the plane
 - The line joining the plane will be the **hypotenuse**
 - The line on the plane will be **adjacent** to the angle
 - The normal will the opposite the angle

How do I find the angle between a line and a plane?

- You need to know:
 - A direction vector for the line (b)
 - This can easily be identified if the equation of the line is in the form $r = a + \lambda b$
 - A normal vector to the plane (n)
 - This can easily be identified if the equation of the plane is in the form $\boldsymbol{r} \cdot \boldsymbol{n} = \boldsymbol{a} \cdot \boldsymbol{n}$
- Find the acute angle between the direction of the line and the normal to the plane

 - $\frac{|\boldsymbol{b}\cdot\boldsymbol{n}|}{|\boldsymbol{b}||\boldsymbol{n}|}$ • Use the formula $\cos \alpha =$
 - The absolute value of the scalar product ensures that the angle is acute
- Subtract this angle from 90° to find the acute angle between the line and the plane IC.
 - Subtract the angle from $\frac{\pi}{2}$ if working in **radians**



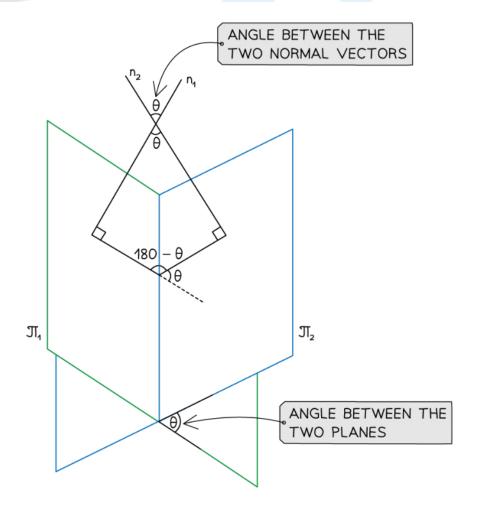
Angle Between Two Planes

How do I find the angle between two planes?

- The angle between two planes is equal to the angle between their **normal vectors**
 - It can be found using the scalar product of their normal vectors

$$\cos\theta = \frac{\boldsymbol{n}_1 \cdot \boldsymbol{n}_2}{|\boldsymbol{n}_1||\boldsymbol{n}_2|}$$

- If two planes Π₁ and Π₂ with normal vectors n₁ and n₂ meet at an angle then the two planes and the two normal vectors will form a quadrilateral
 - The angles between the planes and the normal will both be 90°
 - The angle between the two planes and the angle opposite it (between the two normal vectors) will add up to 180°



Examiner Tip

- In your exam read the question carefully to see if you need to find the acute or obtuse angle
 - When revising, get into the practice of double checking at the end of a question whether your angle is acute or obtuse and whether this fits the question

Worked example

Find the acute angle between the two planes which can be defined by equations $\Pi_1: 2x - y + 3z = 7$ and $\Pi_2: x + 2y - z = 20$.

Find the normal vectors of each of the planes:

$$T_{1}: 2x - y + 3z = 7 \implies \text{normal vector, } n_{1} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

$$T_{2}: x + 2y - z = 20 \implies \text{normal vector, } n_{1} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
Find the angle between the two normal vectors:

$$Angle between two \qquad \cos\theta = \frac{v_{1}w_{1} + v_{2}w_{2} + v_{1}w_{3}}{\|v\| \|v\|}$$

$$\cos\theta = \frac{n_{1} \cdot n_{z}}{|n_{1}||n_{z}|} = \frac{|(2)(1) + (-1)(2) + (3)(-1)|}{\sqrt{2^{2} + (-1)^{2} + 3^{2}} \times \sqrt{1^{2} + 2^{2} + (-1)^{2}}} = \frac{|-3|}{\sqrt{14} \times \sqrt{6}}$$

$$\theta = \cos^{-1}\left(\frac{3}{2\sqrt{21}}\right) \qquad \text{Using the absolute value} \\ \text{ensures we find the acute angle.}$$

$$\theta = 1.24 \text{ radians (3 s.f.)}$$

3.11.4 Shortest Distances with Planes

Shortest Distance Between a Line and a Plane

How do I find the shortest distance between a point and a plane?

- The shortest distance from any point to a plane will always be the **perpendicular** distance from the point to the plane
- Given a point, P with position vector \mathbf{p} and a plane Π with equation $\mathbf{r} \cdot \mathbf{n} = d$
 - STEP 1: Find the **vector equation of the line** perpendicular to the plane that goes through the point, *P*
 - This will have the position vector of the point, *P*, and the direction vector **n**
 - $\mathbf{r} = \mathbf{p} + \lambda \mathbf{n}$
 - STEP 2: Find the value of λ at the **point of intersection** of this line with Π by substituting the equation of the line into the equation of the plane
 - STEP 3: Find the **distance** between the point and the point of intersection
 - Substitute λ into the equation of the line to find the coordinates of the point on the plane closest to point P
 - Find the distance between this point and point P
 - As a shortcut, this distance will be equal to $|\lambda \mathbf{n}|$

How do I find the shortest distance between a given point on a line and a plane?

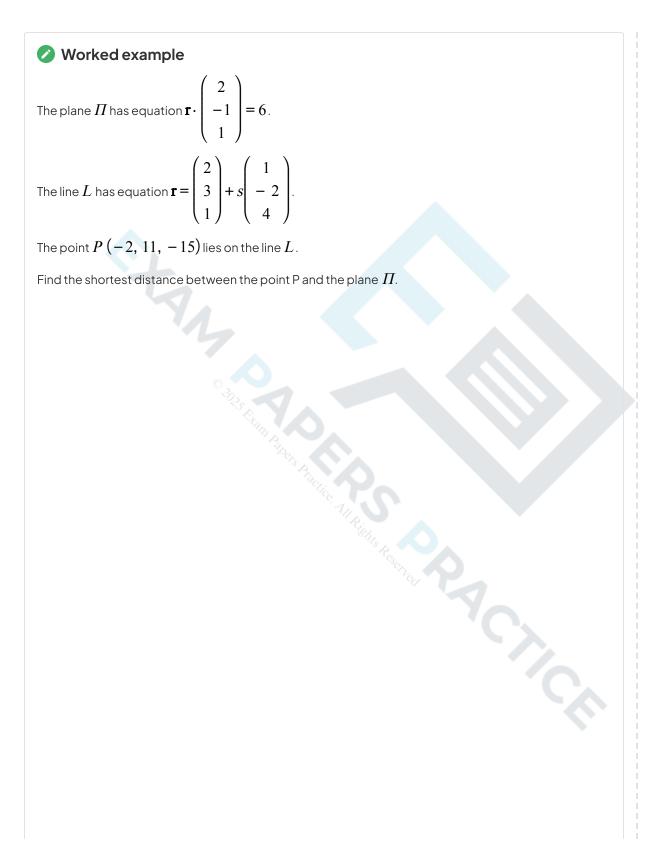
- The shortest distance from any point on a line to a plane will always be the **perpendicular** distance from the point to the plane
- You can follow the same **steps above**
- A question may provide the acute angle between the line and the plane
 - Use right-angled trigonometry to find the perpendicular distance between the point on the line and the plane
 - Drawing a clear diagram will help

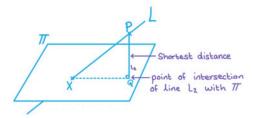
How do I find the shortest distance between a plane and a line parallel to the plane?

- The shortest distance between a line and a plane that are parallel to each other will be the **perpendicular** distance from the line to the plane
- Given a line I_1 with equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and a plane Π parallel to I_1 with equation $\mathbf{r} \cdot \mathbf{n} = d$
 - Where **n** is the **normal vector** to the plane
 - STEP 1: Find the equation of the line l_2 perpendicular to l_1 and Π going through the point **a** in the

form $\mathbf{r} = \mathbf{a} + \mu \mathbf{n}$

- STEP 2: Find the point of intersection of the line l_2 and \varPi
- STEP 3: Find the distance between the point of intersection and the point,





STEP 1: Use the given point, P and the known normal to the plane, \underline{n} to write an equation for the line perpendicular to π , \underline{L}_2 .

$$r = \begin{pmatrix} -2 \\ 11 \\ -15 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

STEP 2: Find the point of intersection, Q, of the new line, L_2 , with $\overline{\Pi}$.

$$\begin{pmatrix} \begin{pmatrix} -2\\ 11\\ -15 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix} = 6$$

$$2(-2+2\lambda) - (11-\lambda) + (\lambda - 15) = 6$$

$$-4 + 4\lambda - 11 + \lambda + \lambda - 15 = 6$$

$$6\lambda - 30 = 6$$

$$\lambda = 6 \Rightarrow \overrightarrow{OQ} = \begin{pmatrix} -2\\ 11\\ -15 \end{pmatrix} + \begin{pmatrix} 6\\ 2\\ -1\\ 1 \end{pmatrix} = \begin{pmatrix} 10\\ 5\\ -9 \end{pmatrix}$$

STEP 3: Find the distance between P and Q.

$$|\vec{PQ}| = \sqrt{(10-2)^2 + (5-11)^2 + (-9-15)^2} = 6\sqrt{6}$$
 units

Shortest distance = $6\sqrt{6}$ units

Shortest Distance Between Two Planes

How do I find the shortest distance between two parallel planes?

- Two parallel planes will never intersect
- The shortest distance between two **parallel planes** will be the **perpendicular distance** between them
- Given a plane Π_1 with equation $\mathbf{r} \cdot \mathbf{n} = d$ and a plane Π_2 with equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ then the

shortest distance between them can be found

- STEP 1: The equation of the line perpendicular to both planes and through the point a can be written in the form r = a + sn
- STEP 2: Substitute the equation of the line into **r** · **n** = d to find the coordinates of the point where the line meets II₁
- STEP 3: Find the distance between the two points of intersection of the line with the two planes

How do I find the shortest distance from a given point on a plane to another plane?

- The shortest distance from any point, P on a plane, Π_1 , to another plane, Π_2 will be the **perpendicular** distance from the point to Π_2
 - STEP 1: Use the given coordinates of the point P on Π_1 and the normal to the plane Π_2 to find the vector equation of the line through P that is perpendicular to Π_1
 - STEP 2: Find the point of intersection of this line with the plane \varPi_2
 - STEP 3: Find the distance between the two points of intersection

Worked example

``

/

Consider the parallel planes defined by the equations:

$$\Pi_1: \mathbf{r} \cdot \begin{pmatrix} 3\\ -5\\ 2 \end{pmatrix} = 44,$$
$$\Pi_2: \mathbf{r} = \begin{pmatrix} 0\\ 0\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 0\\ -3 \end{pmatrix} + \mu \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}.$$

Find the shortest distance between the two planes \varPi_1 and $\varPi_2.$

II Rights Reserved

Find the equation of the line perpendicular to the planes through the point (0,0,3)

$$L: r = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + S \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}$$
Normal vector
of $\overline{M_2}$

Substitute the equation of L into the equation of π_i :

$$\begin{pmatrix} 3s \\ -5s \\ 3+2s \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} = 44$$

3(3s) - 5(-5s) + 2(3+2s) = 44
38s + 6 = 44

Substitute s = 1 back into the equation of L:

$$r = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \\ 5 \end{pmatrix}$$

Find the distance between (0,0,3) and (3,-5,5)

$$d = \sqrt{3^{2} + (-5)^{2} + (5-3)^{2}}$$
$$= \sqrt{38}$$

Shortest distance = $\sqrt{38}$ units