铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.11 Vector Planes

3.11.1 Vector Equations of Planes

Equation of a Plane in Vector Form

Howdolfind the vector equation of a plane?

- A plane is a flat surface which is two-dimensional
- Imagine a flat piece of paper that continues on forever in both directions
- A plane in often denoted using the capital Greek letter Π
- The vectorform of the equation of a plane can be found using two direction vectors on the plane
- The directionvectors must be
- parallelto the plane
- not parallelto each other
- therefore they will intersect at some point on the plane
- The formula for finding the vector equation of a plane is
- $\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c}$
- Where r is the position vector of anypoint on the plane
- a is the position vector of a known point on the plane
- band care two non-parallel direction(displacement) vectors parallel to the plane
- λ and μ are scalars
- The formula is given in the formula booklet but you must make sure you know what each part means
- As acould be the positionvector of any point on the plane and band ccould be any non-parallel direction vectors on the plane there are infinite vector equations for a single plane

Howdoldetermine whether a point lies on a plane?

2. Given the equation of a plane $\boldsymbol{r}=\left(\begin{array}{c}\boldsymbol{a}_{1} \\ \boldsymbol{a}_{2} \\ \boldsymbol{a}_{3}\end{array}\right)+\lambda\left(\begin{array}{c}\boldsymbol{b}_{1} \\ \boldsymbol{b}_{2} \\ \boldsymbol{b}_{3}\end{array}\right)+\mu\left(\begin{array}{c}\boldsymbol{c}_{1} \\ \boldsymbol{c}_{2} \\ \boldsymbol{c}_{3}\end{array}\right)$ then the point \boldsymbol{r} with position vector $\left(\begin{array}{c}x \\ y \\ z\end{array}\right)$ is on the plane if there exists a value of λ and μ such that $\cdot\left(\begin{array}{c}x \\ y \\ Z\end{array}\right)=\left(\begin{array}{l}\boldsymbol{a}_{1} \\ \boldsymbol{a}_{2} \\ \boldsymbol{a}_{3}\end{array}\right)+\lambda\left(\begin{array}{l}\boldsymbol{b}_{1} \\ \boldsymbol{b}_{2} \\ \boldsymbol{b}_{3}\end{array}\right)+\mu\left(\begin{array}{l}\boldsymbol{c}_{1} \\ \boldsymbol{c}_{2} \\ \boldsymbol{c}_{3}\end{array}\right)$

- This means that there exists a single value of λ and μ that satisfy the three parametric equations:
- $x=a_{1}+\lambda b_{1}+\mu c_{1}$
- $y=a_{2}+\lambda b_{2}+\mu c_{2}$
- $z=a_{3}+\lambda b_{3}+\mu c_{3}$
- Solve two of the equations first to find the values of λ and μ that satisfy the first two equation and then check that this value also satisfies the third equation
- If the values of λ and μ do not satisfy all three equations, then the point r does not lie on the plane

- Exam Tip

- The formula for the vector equation of a plane is given in the formula bo oklet, make sure you know what each part means
- Be careful to use different letters, e.g. λ and μ as the scalar multiples of the two direction vectors

Worked example

The points A, B and C have position vectors $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}, \boldsymbol{b}=\mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$, and $\boldsymbol{c}=4 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ respectively, relative to the origin O .
(a) Find the vector equation of the plane.

Start by finding the direction vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$
$\overrightarrow{A B}=\underline{b}-\underline{a}=\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)-\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}-2 \\ -4 \\ 5\end{array}\right)$
$\overrightarrow{A C}=\underline{c}-\underline{a}=\left(\begin{array}{c}4 \\ -1 \\ 3\end{array}\right)-\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}1 \\ -3 \\ 4\end{array}\right)$
All three points lie on the plane, so choose the position vector of one point, e.g. $\overrightarrow{O A}$, to use as ' a ' in the vector equation of a plane formula.
Check that $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are not parallel.
$r=\underline{a}+\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}$

$$
\left.r=\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
-4 \\
5
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-3 \\
4
\end{array}\right) \quad \text { (This is one of many }\right)
$$

(b) Determine whether the point D with coordinates $(-2,-3,5)$ lies on the plane.

Exam Papers Practice

Let D have position vector $\underline{d}=\left(\begin{array}{c}-2 \\ -3 \\ 5\end{array}\right)$, then the point D Lies on the plane if there exists a value of λ and μ for which: $\left(\begin{array}{c}-2 \\ -3 \\ 5\end{array}\right)=\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ -4 \\ 5\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -3 \\ 4\end{array}\right)$

Find the parametric equations:

$$
\left.\begin{array}{rl}
-2=3-2 \lambda+\mu & \Rightarrow \mu-2 \lambda=-5
\end{array} \quad \begin{array}{l}
\text { (1) } \\
-3=2-4 \lambda-3 \mu
\end{array}\right\} \begin{aligned}
& \text { solve two } \\
& \text { equations } \\
& \text { for } \lambda \text { and } \mu . \\
& 5=-1+5 \lambda+4 \mu
\end{aligned} \quad \Rightarrow 4 \mu+5 \lambda=6 \quad \text { (3) } \quad \text { (2) } \quad \text {. }
$$

Find the value of λ and μ from two equations:

$$
\text { 2(1): } 2 \mu-4 \lambda=-10
$$

$$
+ \text { (2): } \frac{3 \mu+4 \lambda=5}{5 \mu=-5}
$$

$$
\begin{aligned}
\mu=-1 \quad \text { sub into (1): }(-1)-2 \lambda & =-5 \\
\lambda & =2
\end{aligned}
$$

$$
\text { Check to see if } \lambda \text { and } \mu \text { satisfy the third equation: }
$$

$$
4(-1)+5(2)=-4+10=6 \checkmark
$$

$$
\text { The point } D \text { lies on the plane. }
$$

Exam
Papers Practice

Copyright
© 2024 Exam Papers Practice

Equation of a Plane in Carte sian Form

How do Ifind the vector equation of a plane in cartesian form?

- The cartesian equation of a plane is given in the form
- $a x+b y+c z=d$
- This is given in the formula booklet
- A normal vector to the plane can be used along with a known point on the plane to find the cartesian equation of the plane
- The normal vector will be a vectorthat is perpendicular to the plane
- The scalar product of the normal vector and any directionvector on the plane will the zero
- The two vectors will be perpendicularto each other
- The direction vector from a fixed-point A to any point on the plane, R can be written as \boldsymbol{r} - a
- Then $\boldsymbol{n} \cdot(\boldsymbol{r}-\boldsymbol{a})=0$ and it follows that $(\boldsymbol{n} \cdot \boldsymbol{r})-(\boldsymbol{n} \cdot \boldsymbol{a})=0$
- This gives the equation of a plane using the no rmal vector:
- $\boldsymbol{n} \cdot \boldsymbol{r}=\boldsymbol{a} \cdot \boldsymbol{n}$
- Where r is the position vector of anypoint on the plane
- a is the position vector of a known point on the plane
- n is a vector that is normal to the plane
- This is given in the formula booklet
- If the vector r is given in the form $\left(\begin{array}{c}\boldsymbol{X} \\ \boldsymbol{y} \\ Z\end{array}\right)$ and \boldsymbol{a} and n nare both known vectors given in the form $\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$

- $\boldsymbol{n} \cdot \boldsymbol{r}=n_{1} x+n_{2} y+n_{3} z$
- $\boldsymbol{a} \cdot \boldsymbol{n}=a_{1} n_{1}+a_{2} n_{2}+a_{3} n_{3}$
- Therefore $n_{1} x+n_{2} y+n_{3} z=a_{1} n_{1}+a_{2} n_{2}+a_{3} n_{3}$
- This simplifies to the form $a x+b y+c z=d$

How do lfind the equation of a plane in Cartesian form given the vector form?

- The Cartesian equation of a plane can be found if you know
- the normalvector and
- apoint on the plane
- The vector equation of a plane can be used to find the normal vector by finding the vector product of the two directionvectors
- Avectorproduct is always perpendicularto the two vectors from which it was calculated
- The vector a given in the vectorequation of a plane is a kno wn point on the plane
- Once you have found the normal vector then the point acan be used in the formula $\boldsymbol{n} \cdot \boldsymbol{r}=\boldsymbol{a} \cdot \boldsymbol{n}$ to find the equation in Cartesian form
- To find $\boldsymbol{a x}+b y+c z=d$ given $\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c}$:
- Let $\boldsymbol{n}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\boldsymbol{b} \times \boldsymbol{c}$ then $d=\boldsymbol{n} \cdot \boldsymbol{a}$

- Exam Tip

- In an exam, using whicheverform of the equation of the plane to write down a normal vector to the plane is always a good starting point

Exam Papers Practice
© 2024 Exam Papers Practice

Worked example

A plane Π contains the point $A(2,6,-3)$ and has a normal vector $\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right)$
a) Find the equation of the plane in its Cartesian form.

The components of the normal vector are the x-, y - and z-coefficients of the Cartesian form:
$3 x-y+4 z=d$
The point $(2,6,-3)$ is on the plane so
$d=3(2)-(6)+4(-3)=6-6-12=-12$
Therefore

$$
3 x-y+4 z=-12
$$

b) Determine whether point B with coordinates $(-1,0,-2)$ lies on the same plane.

Test by putting the coordinates into the equation:
$3(-1)-(0)+4(-2)=-3-8=-11 \neq-12$
The point with coordinates $(-1,0,2)$ does not lie on the plane

3.11.2 Intersections of Lines \& Planes

Intersection of Line \& Plane

Howdoltell if a line is parallelto a plane?

- Aline is parallel to a plane if its direction vector is perpendicular to the plane's normal vector
- If you know the Cartesian equation of the plane in the form $a x+b y+c z=d$ then the values of a, b, and c are the individual components of a normal vector to the plane
- The scalar product can be used to check in the direction vector and the normal vector are perpendicular
- If two vectors are perpendicular theirscalarproduct will be zero

Howdoltell if the line lies inside the plane?

- If the line is parallel to the plane then it will either never intersect orit will lie inside the plane
- Check to see if they have a common point
- If a line is parallel to a plane and they share any point, then the line lies inside the plane

Howdolfind the point of intersection of a line and a plane?

- If a line is not parallel to a plane it will intersect it at a single point
- If both the vector equation of the line and the Cartesian equation of the plane is known then this can be found by:
- STEP 1: Set the po sition vector of the point you are lo oking for to have the individual components x, y, and zand substitute into the vector equation of the line
$\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ m \\ n\end{array}\right)$
- STEP 2: Find the parametric equations in terms of x, y, and z
- $x=x_{0}+\lambda 1$
- $y=y_{0}+\lambda m$
- $z=z_{0}+\lambda n$
- STEP 3: Substitute these parametric equations into the Cartesian equation of the plane and solve to find λ

$$
-a\left(x_{0}+\lambda l\right)+b\left(y_{0}+\lambda m\right)+c\left(z_{0}+\lambda n\right)=d
$$

- STEP 4: Substitute this value of λ back into the vector equation of the line and use it to find the position vector of the point of intersection
- STEP 5: Check this value in the Cartesian equation of the plane to make sure you have the correct answer

Worked example

Find the point of intersection of the line $r=\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$ with the plane $3 x-4 y+z=8$

Find the parametric form of the equation of the line:
Let $r=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$ then $\begin{aligned} & x=1+2 \lambda \\ & y=-3-\lambda \\ & z=2-\lambda\end{aligned}$
Substitute into the equation of the plane:
$3(1+2 \lambda)-4(-3-\lambda)+(2-\lambda)=8$
Solve to find λ

$$
3+6 \lambda+12+4 \lambda+2-\lambda=8
$$

$$
\lambda=-1
$$

Substitute $\lambda=-1$ into the vector equation of the line:

$$
r=\left(\begin{array}{r}
1 \\
-3 \\
2
\end{array}\right)+(-1)\left(\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
-3+1 \\
2+1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-2 \\
3
\end{array}\right)
$$

$$
(-1,-2,3)
$$

Intersection of Planes

How do we find the line of intersection of two planes?

- Two planes will either be parallel or they will intersect along a line
- Consider the point where a wall meets a floor or a ceiling
- You will need to find the equation of the line of intersection
- If you have the Cartesian forms of the two planes then the equation of the line of intersectioncan be found bysolving the two equations simultaneously
- As the solution is a vector equation of a line rather than a unique point you will see below how the equation of the line can be found by part solving the equations
- Forexample:
- $2 x-y+3 z=7$
- $x-3 y+4 z=11$
- STEP 1: Choose one variable and substitute this variable for λ in both equations
- For example, letting $x=\lambda$ gives:
- $2 \lambda-y+3 z=7$
- $\lambda-3 y+4 z=11$
- STEP 2: Rearrange the two equations to bring λ to o ne side
- Equations (1) and (2) become
- $y-3 z=2 \lambda-7$
- $3 y-4 z=\lambda-11$
- STEP 3: Solve the equations simultaneously to find the two variables in terms of λ
- 3(1) - (2) Gives
- $Z=2-\lambda$
- Substituting this into (1) gives
- $y=-1-\lambda$
- STEP 4:Write the three parametric equations for x, y, and z in terms of λ and convert into the vector equation of a line in the form $\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ m \\ n\end{array}\right)$
- The parametric equations
- $\quad x=\lambda$
- $y=-1-\lambda$
- $Z=2-\lambda$
- Become

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)
$$

- If you have fractions in your direction vectoryou can change its magnitude by multiplying each one by their common denominator
- The magnitude of the direction vectorcan be changed without changing the equation of a line
- An alternative method is to find two points on both planes bysetting either x, y, or z to zero and solving the system of equations using yo ur GDC or row reduction
- Repeat this twice to get two points on both planes
- These two points can then be used to find the vector equation of the line between them
- This will be the line of intersection of the planes
- This method relies on the line of intersection having points where the cho sen variables are equal to zero

How do we find the relationship between three planes?

- Three planes could either be parallel, intersect at one point, or intersect along a line
- If the three planes have a unique point of intersection this point can be found by using your GDC (or row reduction) to solve the three equations in their Cartesian form
- Make sure you know how to use your GDC to solve a system of linear equations
- Enter all three equations in for the three variables x, y, and z
- Your GDC will give you the unique solution which will be the coordinates of the point of intersection
- If the three planes do not intersect at a unique point yo u will not be able to use your GDC to solve the equations
- If there are no solutions to the system of Cartesian equations then there is no unique point of intersection
- If the three planes are all p arallel their normal vectors will be parallel to each o ther
- Show that the normal vectors all have equivalent direction vectors
- These direction vectors may be scalar multiples of each other
- If the three planes have no point of intersection and are not all parallel they may have a relationship such as:
- Each plane intersects two o ther planes such that they form a prism (no ne are parallel)
- Two planes are parallel with the third plane intersecting each of them
- Check the normal vectors to see if any two of the planes are parallel to decide which relationship they have
- If the three planes intersect along a line there will not be a unique solution to the three equations but there will be a vector equation of a line that will satis fy the three equations
- The system of equations will need to be solved by elimination or row reduction
- Choose one variable to substitute for λ
- Solve two of the equations simultaneouslyto find the other two variables in terms of λ
－Write x, y ，and z in terms of λ in the parametric form of the equation of the line and convert into the vector form of the equation of a line

3 PARALLEL PLANES

3 NORMALS ARE PARALLEL

NO POINT OF INTERSECTION

2 PARALLEL PLANES

2 NORMALS ARE PARALLEL

2 LINES OF INTERSECTION

A UNIQUE POINT OF INTERSECTION

ONE LINE OF INTERSECTION

EACH PLANE INTERSECTS WITH TWO OTHERS

－Exam Tip

－In an exam you may need to decide the relationship between three planes byusing row reduction to determine the number of solutions
－Make sure you are confident using row reduction to solve systems of linear equations
－Make sure you remember the different forms three planes can take

Worked example

Two planes Π_{1} and Π_{2} are defined by the equations:
$\Pi_{1}: 3 x+4 y+2 z=7$
$\Pi_{2}: x-2 y+3 z=5$
Find the vectorequation of the line of intersection of the two planes.

STEP 3: Find x and y in terms of λ :
(1) - 2(2): $(3 x+4 y=7-2 \lambda)$

$$
\begin{aligned}
&+(2 x-4 y=10-6 \lambda) \\
& 5 x=17-8 \lambda
\end{aligned}
$$

$x=\frac{17}{5}-\frac{8 \lambda}{5}$
Exa
Expan

3.11.3 Angles Between Lines \& Planes

Angle Between Line \& Plane

Howdo Ifind the angle between a line and a plane?

- When you find the angle between a line and a plane you will be finding the angle between the line its elf and the line on the plane that creates the smallest angle with it
- This means the line on the plane directly under the line as it jo ins the plane
- It is easiest to think of these two lines making a right-triangle with the normal vector to the plane
- The line joining the plane will be the hypotenuse
- The line on the plane will be adjacent to the angle
- The no rmal will the opposite the angle
- As you do not know the angle of the line on the plane you can instead find the angle between the normal and the hypotenuse
- This is the angle opposite the angle you want to find
- This angle canbe found because you will know the directionvector of the line joining the plane and the normal vector to the plane
- This angle is also equal to the angle made by the line at the po int it joins the plane and the normal vector at this point
- The smallest angle between the line and the plane will be 90° minus the angle between the normal vector and the line
- In radians this will be $\frac{\pi}{2}$ minus the angle between the normal vector and the line

THE PLANE

- Exam Tip

- Remember that if the scalar product is negative your answer will result in an obtuse angle
- Taking the absolute value of the scalar product will ensure that you get the acute angle as your answer

Worked example

Find the angle in radians between the line L with vector equation
$\boldsymbol{r}=(2-\lambda) \boldsymbol{i}+(\lambda+1) \boldsymbol{j}+(1-2 \lambda) \boldsymbol{k}$ and the plane Π with Cartesian equation $x-3 y+2 z=5$.

Rewrite line equation in standard vector form:
$r=\left(\begin{array}{l}2-\lambda \\ 1+\lambda \\ 1-2 \lambda\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 1 \\ -2\end{array}\right)$

- direction vector of the line

Find the normal vector of the plane:
 normal vector
Find the angle between the direction vector and the normal vector, a :

$$
\theta=\frac{\pi}{2}-\cos ^{-1} \alpha
$$

$$
\theta=\frac{\pi}{2}-\cos ^{-1}\left(\frac{|-8|}{\sqrt{6} \sqrt{14}}\right) \begin{aligned}
& \text { using the absolute value } \\
& \text { ensures we find the acute angle. }
\end{aligned}
$$

$$
\theta=1.06 \text { radians (} 3 \text { s.f.) }
$$

Angle Between Two Planes

How do we find the angle bet ween two planes?

- The angle between two planes is equal to the angle between theirnormal vectors
- It can be found using the scalar product of theirnormal vectors
- If two planes Π_{1} and Π_{2} with normal vectors n_{1} and n_{2} meet at an angle then the two planes and the two no rmal vectors will form a quad rilateral
- The angles between the planes and the normal will both be 90°
- The angle between the two planes and the angle opposite it (between the two no rmal vectors) will add up to 180°

F,旬
 Exam Papers Practice

- Exam Tip

- In your exam read the question carefully to see if you need to find the acute or obtuse angle
- When revising, get into the practice of double checking at the end of a question whether your angle is acute or obtuse and whether this fits the question

Worked example

Find the acute angle between the two planes which can be defined by equations $\Pi_{1}: 2 x-y+3 z=7$ and $\Pi_{2}: x+2 y-z=20$.

$$
\begin{aligned}
& \text { Find the normal vectors of each of the planes: } \\
& \pi_{1}: 2 x-y+3 z=7 \Rightarrow \text { normal vector, } n_{1}=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right) \\
& \pi_{2}: x+2 y-z=20 \Rightarrow \text { normal vector, } n_{2}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
\end{aligned}
$$

Find the angle between the two normal vectors:

Angle between two vectors	$\cos \theta=\frac{v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}}{\|\boldsymbol{v} \\| \boldsymbol{w}\|}$

$$
\cos \theta=\frac{n_{1} \cdot n_{2}}{\left|n_{1}\right|\left|n_{2}\right|}=\frac{|(2)(1)+(-1)(2)+(3)(-1)| \kappa}{\sqrt{2^{2}+(-1)^{2}+3^{2}} \times \sqrt{1^{2}+2^{2}+(-1)^{2}}}=\frac{|-3|}{\sqrt{14} \times \sqrt{6}}
$$

$$
\theta^{\text {Practice }} \cos ^{-1}\left(\frac{3}{2 \sqrt{21}}\right) \quad \begin{aligned}
& \text { using the absolute value } \\
& \text { ensures we find the acute angle. }
\end{aligned}
$$

$$
\theta=1.24 \text { radians (3 s.f.) }
$$

3.11.4 Shortest Distances with Planes

Shortest Distance Between a Line and a Plane

How do Ifind the shortest distance between a given point on a line and a plane?

- The shortest distance from any point on a line to a plane will always be the perpendicular distance from the point to the plane
- Given a point, P, on the line l with equation $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ and a plane Π with equation $\mathbf{r} \cdot \mathbf{n}=d$
- STEP 1: Find the vector equation of the line perpendicular to the plane that goes through the point, P, on 1
- This will have the position vector of the point, P, and the directionvectorn
- STEP 2: Find the coordinates of the point of intersection of this new line with Π by substituting the equatio n of the line into the equation of the plane
- STEP 3: Find the distance between the given point on the line and the point of intersection
- This will be the shortest distance from the plane to the po int
- A question mayprovide the acute angle between the line and the plane
- Use right-angled trigonometryto find the perpendicular distance between the point on the line and the plane
- Drawing a clear diagram will help

Howdo Ifind the shortest distance bet ween a plane and a line parallel to the plane?

- The shortest distance between a line and a plane that are parallel to each other will be the perpendicular distance from the line to the plane
- Given a line l_{1} with equation $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ and a plane Π parallel to l_{1} with equation $\mathbf{r} \cdot \mathbf{n}=d$
- Where \mathbf{n} is the normal vector to the plane
- STEP 1: Find the equatio n of the line l_{2} perpendicular to l_{1} and Π going through the point a in the form $\mathbf{r}=\mathbf{a}+\mu \mathbf{n}$
- STEP 2: Find the point of intersection of the line l_{2} and Π
- STEP 3: Find the distance between the point of intersection and the point,

© Exam Tip

- Vector planes questions can be tricky to visualise, read the question carefully and sketch a very simple diagram to help you get started

Exam Papers Practice

Worked example

The plane Π has equation $\mathbf{r} \cdot\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=6$.
The line L has equation $\mathbf{r}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)+s\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)$.
The point $P(-2,11,-15)$ lies on the line L.
Find the shortest distance between the point P and the plane Π.

STEP I: Use the given point, P and the known normal to the plane, \underline{n} to write an equation for the line perpendicular to Π, l_{2}.

$$
r=\left(\begin{array}{r}
-2 \\
11 \\
-15
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
$$

Copyright
STEP 2: Find the point of intersection, Q, of the new line, l_{2}, with π.

$$
\begin{aligned}
\text { ers Pr}\left(\left(\begin{array}{c}
-2 \\
11 \\
-15
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)\right) \cdot\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) & =6 \\
2(-2+2 \lambda)-(11-\lambda)+(\lambda-15) & =6 \\
-4+4 \lambda-11+\lambda+\lambda-15 & =6 \\
6 \lambda-30 & =6 \\
\lambda & =6 \Rightarrow \overrightarrow{O Q}=\left(\begin{array}{c}
-2 \\
11 \\
-15
\end{array}\right)+6\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
10 \\
5 \\
-9
\end{array}\right)
\end{aligned}
$$

STEP 3: Find the distance between P and Q.

$$
|\overrightarrow{P Q}|=\sqrt{(10--2)^{2}+(5-11)^{2}+(-9--15)^{2}}=6 \sqrt{6} \text { units }
$$

Shortest distance $=6 \sqrt{6}$ units

Shortest Distance Between Two Planes

How do Ifind the shortest distance between two parallel planes?

- Two parallel planes will never intersect
- The shortest distance between two parallel planes will be the perpendicular distance between them
- Given a plane Π_{1} with equation $\mathbf{r} \cdot \mathbf{n}=d$ and a plane Π_{2} with equation $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$ then the shortest distance between them can be found
- STEP 1: The equation of the line perpendicular to both planes and through the point a can be written in the form $\mathbf{r}=\mathbf{a}+\mathbf{s n}$
- STEP 2: Substitute the equatio n of the line into $\mathbf{r} \cdot \mathbf{n}=d$ to find the coordinates of the point where the line meets Π_{1}
- STEP 3: Find the distance between the two points of intersection of the line with the two planes

Howdo lfind the shortest distance from a given point on a plane to another plane?

- The shortest distance from any point, Pon a plane, Π_{1}, to another plane, Π_{2} will be the perpendicular distance from the point to Π_{2}
- STEP 1: Use the given coordinates of the point Pon Π_{1} and the normal to the plane Π_{2} to find the vectorequation of the line through P that is perpendicular to Π_{1}
- STEP 2: Find the po int of intersection of this line with the plane Π_{2}
- STEP 3: Find the distance between the two points of intersection

- Exam Tip

- There are a lot of steps when answering these questions so set your methods out clearly in the exam
c 2024 Exam Papers Practice

Worked example

Consider the parallel planes defined by the equations:

$$
\begin{aligned}
& \Pi_{1}: \mathbf{r} \cdot\left(\begin{array}{c}
3 \\
-5 \\
2
\end{array}\right)=44, \\
& \Pi_{2}: \mathbf{r}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
\end{aligned}
$$

Find the shortest distance between the two planes Π_{1} and Π_{2}.

Find the equation of the line perpendicular to the planes through the point $(0,0,3)$

Substitute the equation of L into the equation of π_{1} :

$$
\begin{gathered}
\left(\begin{array}{c}
3 s \\
-5 s \\
3+2 s
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
-5 \\
2
\end{array}\right)=44 \\
3(3 s)-5(-5 s)+2(3+2 s)=44
\end{gathered}
$$

$\begin{aligned} & 38 s+6=44 \\ & s=1 \\ & \text { Substitute } s=1 \text { back into the equation of } L\end{aligned}$

$$
r=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)+\left(\begin{array}{c}
3 \\
-5 \\
2
\end{array}\right)=\left(\begin{array}{c}
3 \\
-5 \\
5
\end{array}\right)
$$

Find the distance between $(0,0,3)$ and $(3,-5,5)$

$$
\begin{aligned}
d & =\sqrt{3^{2}+(-5)^{2}+(5-3)^{2}} \\
& =\sqrt{38}
\end{aligned}
$$

Copyright

```
Shortest distance \(=\sqrt{38}\) units
```

