
3.11 Vector Planes

AA HL



3.11.1 Vector Equations of Planes

Equation of a Plane in Vector Form

How do I find t he vect or equat ion of  a plane?

A plane is a flat surface which is two -dimensio nal

Imagine a flat piece o f paper that co ntinues o n fo rever in bo th directio ns

A plane in o ften deno ted using the capital Greek letter Π
The vecto r fo rm o f the equatio n o f a plane can be fo und using two  directio n vecto rs o n the

plane

The directio n vecto rs must be

parallel to  the plane

no t parallel to  each o ther

therefo re they will intersect at so me po int o n the plane

The fo rmula fo r finding the vecto r equatio n o f a plane is

r=a+λb+μc
Where r is the po sitio n vecto r o f any po int o n the plane

a is the po sitio n vecto r o f a kno wn po int o n the plane

b and c are two  no n-parallel directio n (displacement) vecto rs parallel to  the plane

λ and μ are scalars

The fo rmula is given in the f o rmula bo o klet but yo u must make sure yo u kno w what each part

means

As a co uld be the po sitio n vecto r o f any  po int o n the plane and b and c co uld be any no n-parallel

directio n vecto rs o n the plane there are infinite vecto r equatio ns fo r a single plane

How do I det erm ine whet her a point  lies on a plane?

Given the equatio n o f a plane r =
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

a1
a2
a3

+λ
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

b 1

b 2

b 3

+ μ
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

c1
c2
c3

then the po int r with po sitio n

vecto r 
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 is o n the plane if there exists a value o f λ and μ such that
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This means that there exists a single value o f λ and μ that satisfy the three parametric

equatio ns:

x= a1+λb1+ μc1
y= a2+λb2+ μc2
z= a3+λb3 + μc3

So lve two  o f the equatio ns first to  find the values o f λ and μ that satisfy the first two  equatio n and

then check that this value also  satisfies the third equatio n

If the values o f λ and μ do  no t satisfy all three equatio ns, then the po int r do es no t lie o n the plane

Exam T ip

The fo rmula fo r the vecto r equatio n o f a plane is given in the fo rmula bo o klet, make sure yo u

kno w what each part means

Be careful to  use different letters, e.g.   and   as the scalar multiples o f the two  directio n

vecto rs

Worked example

The po ints A, B and C have po sitio n vecto rs a=3i+2j−k , b= i−2j+4k , and

c=4i− j+3k  respectively, relative to  the o rigin O.

(a) Find the vecto r equatio n o f the plane.

(b) Determine whether the po int D with co o rdinates (-2, -3, 5) lies o n the plane.
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Equation of a Plane in Cartesian Form

How do I find t he vect or equat ion of  a plane in cart esian f orm ?

The cartesian equatio n o f a plane is given in the fo rm

ax+by+cz=d
This is given in the f o rmula bo o klet

A no rmal vecto r to  the plane can be used alo ng with a kno wn po int o n the plane  to  find the

cartesian equatio n o f the plane

The no rmal vecto r will be a vecto r that is perpendicular to  the plane

The scalar pro duct o f the no rmal vecto r and any directio n vecto r o n the plane will the z ero

The two  vecto rs will be perpendicular to  each o ther

The directio n vecto r fro m a fixed-po int A to  any po int o n the plane, R can be written as r – a

Then n ∙ (r – a) = 0 and it fo llo ws that (n ∙ r) – (n ∙ a) = 0

This gives the equatio n o f  a plane using the no rmal vecto r:

n ∙ r = a ∙ n
Where r is the po sitio n vecto r o f any po int o n the plane

a is the po sitio n vecto r o f a kno wn po int o n the plane

n is a vecto r that is no rmal to  the plane

This is given in the f o rmula bo o klet

If the vecto r r is given in the fo rm 
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 and a and n are bo th kno wn vecto rs given in the fo rm 
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 then the Cartesian equatio n o f the plane can be fo und using:

n · r=n1x+n2y+n3z
a · n=a1n1+a2n2+a3n3
Therefo re n1x+n2y+n3z=a1n1+a2n2+a3n3
This simplifies to  the fo rm ax+by+cz=d

How do I find t he equat ion of  a plane in Cart esian f orm  g iven t he vect or f orm ?

The Cartesian equatio n o f a plane can be fo und if yo u kno w

the no rmal vecto r and

a po int o n the plane
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The vecto r equatio n o f  a plane can be used to  find the no rmal vecto r by finding the vecto r

pro duct  o f the two  directio n vecto rs

A vecto r pro duct is always perpendicular to  the two  vecto rs fro m which it was calculated

The vecto r a given in the vecto r equatio n o f a plane is a kno wn po int o n the plane

Once yo u have fo und the no rmal vecto r then the po int a can be used in the fo rmula n ∙ r = a ∙ n
to  find the equatio n in Cartesian fo rm

To  find ax+by+cz=d  given r=a+λb+μc  :

Let n=
⎛
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Exam T ip

In an exam, using whichever fo rm o f the equatio n o f the plane to  write do wn a no rmal vecto r

to  the plane is always a go o d starting po int
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a)

b)

Worked example

A plane Π  co ntains the po int A (2, 6,−3)  and has a no rmal vecto r 
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.

Find the equatio n o f the plane in its Cartesian fo rm.

Determine whether po int B with co o rdinates (−1, 0,−2)  lies o n the same plane.
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3.11.2 Intersections of Lines & Planes

Intersection of Line & Plane

How do I t ell if  a line is parallel t o a plane?

A line is parallel to  a plane if its directio n vecto r is perpendicular to  the plane’s no rmal vecto r

If yo u kno w the Cartesian equatio n o f the plane in the fo rm ax+by+cz=d  then the values o f

a, b, and c are the individual co mpo nents o f a no rmal vecto r to  the plane

The scalar pro duct can be used to  check in the directio n vecto r and the no rmal vecto r are

perpendicular

If two  vecto rs are perpendicular their scalar pro duct will be z ero

How do I t ell if  t he line lies inside t he plane?

If the line is parallel to  the plane then it will either never intersect o r it will lie inside the plane

Check to  see if they have a co mmo n po int

If a line is parallel to  a plane and they share any po int , then the line lies inside the plane

How do I find t he point  of  int ersect ion of  a line and a plane?

If a line is no t parallel to  a plane it will intersect  it at a single po int

If bo th the vecto r equatio n o f  the line  and the Cartesian equatio n o f  the plane  is kno wn then

this can be fo und by:

STEP 1: Set the po sitio n vecto r o f the po int yo u are lo o king fo r to  have the individual co mpo nents

x, y, and z and substitute into  the vecto r equatio n o f the line
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STEP 2: Find the parametric equatio ns in terms o f x, y, and z

x= x0+ λl
y= y0+ λm
z= z0+ λn

STEP 3: Substitute these parametric equatio ns into  the Cartesian equatio n o f the plane and so lve

to  find λ

a
( )
x0+ λl +b (y0+ λm)+c (z0+ λn)=d
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STEP 4: Substitute this value o f λ back into  the vecto r equatio n o f the line and use it to  find the

po sitio n vecto r o f the po int o f intersectio n

STEP 5: Check this value in the Cartesian equatio n o f the plane to  make sure yo u have the co rrect

answer

Worked example

Find the po int o f intersectio n o f the line r =
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 with the plane 

3x−4y+z=8 .
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Intersection of Planes

How do we find t he line of  int ersect ion of  t wo planes?

Two  planes will either be parallel o r they will intersect alo ng a line

Co nsider the po int where a wall meets a flo o r o r a ceiling

Yo u will need to  find the equatio n o f  the line  o f intersectio n

If yo u have the Cartesian fo rms o f the two  planes then the equatio n o f the line o f intersectio n can

be fo und by so lving the two  equatio ns simultaneo usly

As the so lutio n is a vecto r equatio n o f a line rather than a unique po int yo u will see belo w ho w

the equatio n o f the line can be fo und by part so lving the equatio ns

Fo r example:    

2x−y+3z=7                            (1)

x−3y+4z=11                        (2)

STEP 1: Cho o se o ne variable and substitute this variable fo r λ in bo th equatio ns

Fo r example, letting x = λ gives:

2λ−y+3z=7                           (1)

λ−3y+4z=11                         (2)

STEP 2: Rearrange the two  equatio ns to  bring λ to  o ne side

Equatio ns (1) and (2) beco me

y−3z=2λ − 7                        (1)

3y−4z=λ− 11                        (2)

STEP 3: So lve the equatio ns simultaneo usly to  find the two  variables in terms o f λ
3(1) – (2) Gives

z = 2 −λ
Substituting this into  (1) gives

y= −1−λ
STEP 4: Write the three parametric equatio ns fo r x, y, and z in terms o f λ and co nvert into  the vecto r

equatio n o f a line in the fo rm 
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The parametric equatio ns

x=λ
y=−1 − λ
z=2 − λ

Beco me
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If yo u have fractio ns in yo ur directio n vecto r yo u can change its magnitude by multiplying each

o ne by their co mmo n deno minato r

The magnitude o f the directio n vecto r can be changed witho ut changing the equatio n o f a

line

An alternative metho d is to  find two  po ints o n bo th planes by setting either x, y, o r z to  z ero  and

so lving the system o f equatio ns using yo ur GDC o r ro w reductio n

Repeat this twice to  get two  po ints o n bo th planes

These two  po ints can then be used to  find the vecto r equatio n o f the line between them

This will be the line o f intersectio n o f the planes

This metho d relies o n the line o f intersectio n having po ints where the cho sen variables are

equal to  z ero

How do we find t he relat ionship bet ween t hree planes?

Three planes co uld either be parallel, intersect at o ne po int , o r intersect alo ng a line

If the three planes have a unique po int o f  intersectio n this po int can be fo und by using yo ur GDC

(o r ro w reductio n) to  so lve the three equatio ns in their Cartesian fo rm

Make sure yo u kno w ho w to  use yo ur GDC to  so lve a system o f  linear equatio ns

Enter all three equatio ns in fo r the three variables x, y, and z

Yo ur GDC will give yo u the unique so lutio n which will be the co o rdinates o f the po int o f

intersectio n

If the three planes do  no t intersect at a unique po int yo u will no t be able to  use yo ur GDC to  so lve

the equatio ns

If there are no  so lutio ns to  the system o f Cartesian equatio ns then there is no  unique po int o f

intersectio n

If the three planes are all parallel their no rmal vecto rs  will be parallel to  each o ther

Sho w that the no rmal vecto rs all have equivalent directio n vecto rs

These directio n vecto rs may be scalar multiples  o f each o ther

If the three planes have no  po int o f  intersectio n and are no t all parallel they may have a

relatio nship such as:

Each plane intersects two  o ther planes such that they fo rm a prism (no ne are parallel)

Two  planes are parallel with the third plane intersecting each o f them

Check the no rmal vecto rs to  see if any two  o f the planes are parallel to  decide which

relatio nship they have

If the three planes intersect alo ng a line there will no t be a unique so lutio n to  the three equatio ns

but there will be a vecto r equatio n o f  a line  that will satisfy the three equatio ns

The system o f equatio ns will need to  be so lved by eliminatio n o r ro w reductio n

Cho o se o ne variable to  substitute fo r λ
So lve two  o f the equatio ns simultaneo usly to  find the o ther two  variables in terms o f λ
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Write x, y, and z in terms o f λ in the parametric fo rm o f the equatio n o f the line and co nvert into

the vecto r fo rm o f the equatio n o f a line

Exam T ip

In an exam yo u may need to  decide the relatio nship between three planes by using ro w

reductio n to  determine the number o f so lutio ns

Make sure yo u are co nfident using ro w reductio n to  so lve systems o f linear equatio ns

Make sure yo u remember the different fo rms three planes can take
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Worked example

Two  planes Π1 and Π2 are defined by the equatio ns:

Π1: 3x+4y+2z=7

Π2: x−2y+3z=5

Find the vecto r equatio n o f the line o f intersectio n o f the two  planes.
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3.11.3 Angles Between Lines & Planes

Angle Between Line & Plane

How do I find t he ang le bet ween a line and a plane?

When yo u find the angle between a line and a plane yo u will be finding the angle between the line

itself and the line o n the plane that creates the smallest angle with it

This means the line o n the plane directly under the line as it jo ins the plane

It is easiest to  think o f these two  lines making a right-triangle with the no rmal vecto r to  the plane

The line jo ining the plane will be the hypo tenuse

The line o n the plane will be adjacent to  the angle

The no rmal will the o ppo site  the angle

As yo u do  no t kno w the angle o f the line o n the plane yo u can instead find the angle between the

no rmal and the hypo tenuse

This is the angle o ppo site the angle yo u want to  find

This angle can be f o und  because yo u will kno w the directio n vecto r o f the line jo ining the

plane and the no rmal vecto r to  the plane

This angle is also  equal to  the angle made by the line at the po int it jo ins the plane and the

no rmal vecto r at this po int

The smallest angle between the line and the plane will be 90° minus the angle between the no rmal

vecto r and the line

In radians this will be 
π

2
 minus the angle between the no rmal vecto r and the line

Exam T ip

Remember that if the scalar pro duct is negative yo ur answer will result in an o btuse angle

Taking the abso lute value o f the scalar pro duct will ensure that yo u get the acute angle as

yo ur answer
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Worked example

Find the angle in radians between the line L with vecto r equatio n 

r= ( )2−λ i+ ( )λ+1 j+ ( )1−2λ k  and the plane Π  with Cartesian equatio n 

x−3y+2z=5.
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Angle Between Two Planes

How do we find t he ang le bet ween t wo planes?

The angle between two  planes is equal to  the angle between their no rmal vecto rs

It can be fo und using the scalar pro duct  o f their no rmal vecto rs

If two  planes Π  and Π  with no rmal vecto rs n  and n meet at an angle then the two  planes and the

two  no rmal vecto rs will fo rm a quadrilateral

The angles between the planes and the no rmal will bo th be 90°

The angle between the two  planes and the angle o ppo site it (between the two  no rmal

vecto rs) will add up to  180°

1 2 1 2 
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Exam T ip

In yo ur exam read the questio n carefully to  see if yo u need to  find the acute o r o btuse angle

When revising, get into  the practice o f do uble checking at the end o f a questio n whether

yo ur angle is acute o r o btuse and whether this fits the questio n

Worked example

Find the acute angle between the two  planes which can be defined by equatio ns 

Π1: 2x−y+3z= 7 and Π2: x+2y−z=20.
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3.11.4 Shortest Distances with Planes

Shortest Distance Between a Line and a Plane

How do I find t he short est  dist ance bet ween a g iven point  on a line and a plane?

The sho rtest distance fro m any po int o n a line to  a plane will always be the perpendicular

distance fro m the po int to  the plane

Given a po int, P, o n the line l  with equatio n r= a+λb  and a plane Π  with equatio n r·n=d
STEP 1: Find the vecto r equatio n o f the line perpendicular to  the plane that go es thro ugh the

po int, P, o n l
This will have the po sitio n vecto r o f the po int, P, and the directio n vecto r n

STEP 2: Find the co o rdinates o f the po int o f intersectio n o f this new line with Π  by

substituting the equatio n o f the line into  the equatio n o f the plane

STEP 3: Find the distance between the given po int o n the line and the po int o f intersectio n

This will be the sho rtest distance fro m the plane to  the po int

A questio n may pro vide the acute angle between the line and the plane 

Use right-angled trigo no metry to  find the perpendicular distance between the po int o n the

line and the plane

Drawing a clear diagram will help

How do I find t he short est  dist ance bet ween a plane and a line parallel t o t he plane?
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The sho rtest distance between a line and a plane that are parallel to  each o ther will be the

perpendicular distance fro m the line to  the plane

Given a line l1 with equatio n r= a+λb and a plane Π parallel to  l1 with equatio n r·n=d
Where n is the no rmal vecto r to  the plane

STEP 1: Find the equatio n o f the line l2 perpendicular to  l1 and Π  go ing thro ugh the po int a in

the fo rm r= a+μn
STEP 2: Find the po int o f intersectio n o f the line l2  and Π
STEP 3: Find the distance between the po int o f intersectio n and the po int,

Exam T ip

Vecto r planes questio ns can be tricky to  visualise, read the questio n carefully and sketch a

very simple diagram to  help yo u get started
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Worked example

The plane Π  has equatio n r ⋅
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

2
−1
1

=6.

The line L  has equatio n r=
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

2
3
1
+s

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

1
− 2
4

.

The po int P (−2, 11, −15)  lies o n the line L .

Find the sho rtest distance between the po int P and the plane Π .
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Shortest Distance Between Two Planes

How do I find t he short est  dist ance bet ween t wo parallel planes?

Two  parallel planes will never intersect

The sho rtest distance between two  parallel planes  will be the perpendicular distance between

them

Given a plane Π1 with equatio n r·n=d  and a plane Π2 with equatio n r= a+λb+ μ c then the

sho rtest distance between them can be fo und

STEP 1: The equatio n o f the line perpendicular to  bo th planes and thro ugh the po int a can be

written in the fo rm r = a + sn

STEP 2: Substitute the equatio n o f the line into  r·n=d  to  find the co o rdinates o f the po int

where the line meets Π1
STEP 3: Find the distance between the two  po ints o f intersectio n o f the line with the two

planes

How do I find t he short est  dist ance f rom  a g iven point  on a plane t o anot her plane?

The sho rtest distance fro m any po int, P o n a plane, Π1 , to  ano ther plane, Π2  will be the

perpendicular distance fro m the po int to  Π2
STEP 1: Use the given co o rdinates o f the po int P o n Π1  and the no rmal to  the plane Π2  to  find

the vecto r equatio n o f the line thro ugh P that is perpendicular to  Π1
STEP 2: Find the po int o f intersectio n o f this line with the plane Π2
STEP 3: Find the distance between the two  po ints o f intersectio n

Exam T ip

There are a lo t o f steps when answering these questio ns so  set yo ur metho ds o ut clearly in

the exam

Worked example

Co nsider the parallel planes de�ned by the equatio ns:

Π1 : r ⋅
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

3
−5
2

= 44,

Π2 : r =
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

0
0
3
+ λ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

2
0
−3

+ μ
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

1
1
1

.

Find the sho rtest distance between the two  planes Π1 and Π2 .

Page 20 of 21
For more help visit our website www.exampaperspractice.co.uk



Page 21 of 21
For more help visit our website www.exampaperspractice.co.uk


