

3.10 Vector Equations of Lines

in a

Contents

- ✤ 3.10.1 Vector Equations of Lines
- ✤ 3.10.2 Applications to Kinematics
- ✤ 3.10.3 Pairs of Lines in 3D
- ✤ 3.10.4 Shortest Distances with Lines

Rights Reserved

3.10.1 Vector Equations of Lines

Equation of a Line in Vector Form

How do I find the vector equation of a line?

- The formula for finding the **vector equation** of a line is
 - $r = a + \lambda b$
 - Where *r* is the **position vector** of any point on the line
 - *a* is the **position vector** of a known point on the line
 - **b** is a **direction** (displacement) **vector**
 - λ is a scalar
 - This is given in the formula booklet
 - This equation can be used for vectors in both 2- and 3- dimensions
- This formula is similar to a regular equation of a straight line in the form Y = mX + c but with a vector to show both a point on the line and the direction (or gradient) of the line
 - In 2D the gradient can be found from the direction vector
 - In 3D a numerical value for the direction cannot be found, it is given as a vector
- As *a* could be the position vector of *any* point on the line and *b* could be *any scalar multiple* of the direction vector there are infinite vector equations for a single line
- Given any two points on a line with position vectors **a** and **b** the **displacement** vector can be written as b-a
 - So the formula $\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} \mathbf{a})$ can be used to find the vector equation of the line
 - This is not given in the formula booklet

How do I determine whether a point lies on a line?

• Given the equation of a line
$$\mathbf{r} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix}$$
 the point \mathbf{c} with position vector $\begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix}$ is on
the line if there exists a value of λ such that
• $\begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix}$

the line if there exists a value of λ such that

$$\begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix}$$

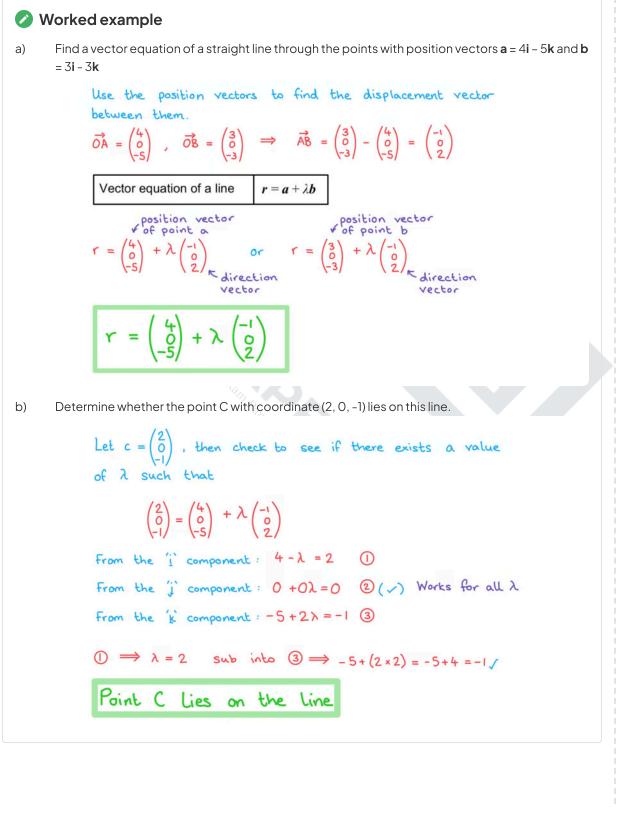
- This means that there exists a single value of λ that satisfies the three equations:
 - $c_1 = a_1 + \lambda b_1$

$$c_2 = a_2 + \lambda b_2$$

• $c_3 = a_3 + \lambda b_3$

- A GDC can be used to solve this system of linear equations for
 - The point only lies on the line if a single value of λ exists for all three equations
- Solve one of the equations first to find a value of λ that satisfies the first equation and then check that this value also satisfies the other two equations
- If the value of λ does not satisfy all three equations, then the point **c** does not lie on the line

Cators Havenin P.S. Reserved



Equation of a Line in Parametric Form

How do I find the vector equation of a line in parametric form?

• By considering the three separate components of a vector in the *x*, *y* and *z* directions it is possible to write the **vector equation** of a line as **three separate equations**

• Letting
$$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 then $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ becomes
• $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$
• Where $\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ is a position vector and $\begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$ is a direction vector $\begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$

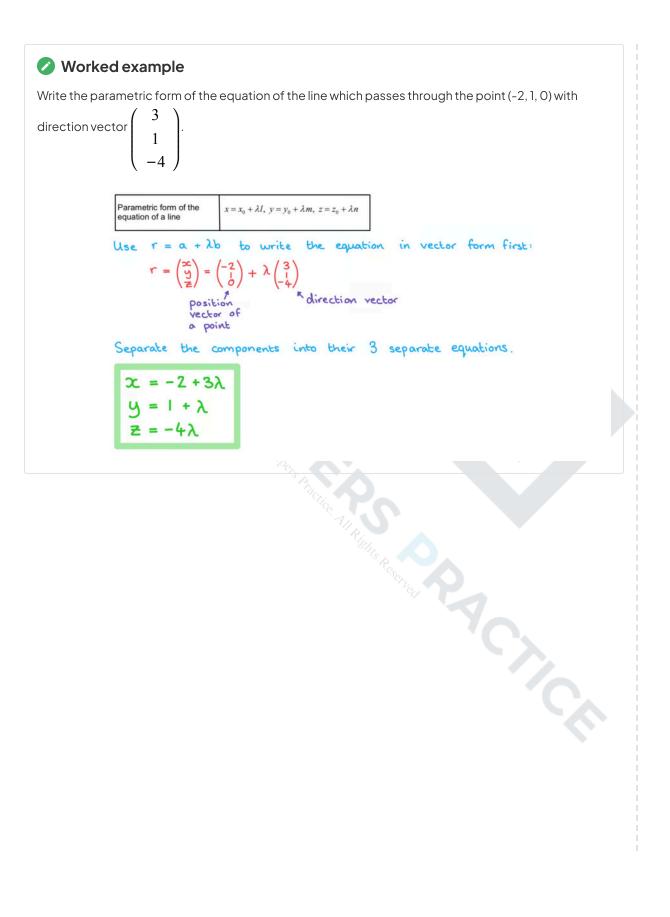
- This vector equation can then be split into its three separate component forms:
 - $x = x_0 + \lambda l$

•
$$y = y_0 + \lambda m$$

$$z = z_0 + \lambda n$$

• These are given in the formula booklet

⁵Reserved



Equation of a Line in Cartesian Form

- The Cartesian equation of a line can be found from the vector equation of a line by
 - Finding the vector equation of the line in parametric form
 - Eliminating λ from the parametric equations
 - λ can be eliminated by **making it the subject** of each of the parametric equations
 - For example: $x = x_0 + \lambda l$ gives $\lambda = \frac{x x_0}{l}$
- In 2D the cartesian equation of a line is a regular equation of a straight line simply given in the form
 - y = mx + c
 - ax + by + d = 0• $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ by rearranging $y - y_1 = m(x - x_1)$
- In **3D** the cartesian equation of a line also includes z and is given in the form

$$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$$
where $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} l \\ m \\ n \end{pmatrix}$

- This is given in the formula booklet
- If one of your variables **does not depend on** λ then this part can be written as a separate equation

• For example:
$$m = 0 \Rightarrow y = y_0$$
 gives $\frac{x - x_0}{l} = \frac{z - z_0}{n}$, $y = y_0$

How do I find the vector equation of a line given the Cartesian form?

• If you are given the Cartesian equation of a line in the form

$$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$$

- A vector equation of the line can be found by
 - STEP 1: Set each part of the equation equal to λ individually
 - STEP 2: Rearrange each of these three equations (or two if working in 2D) to make x, y, and z the subjects
 - This will give you the three parametric equations

•
$$x = x_0 + \lambda l$$

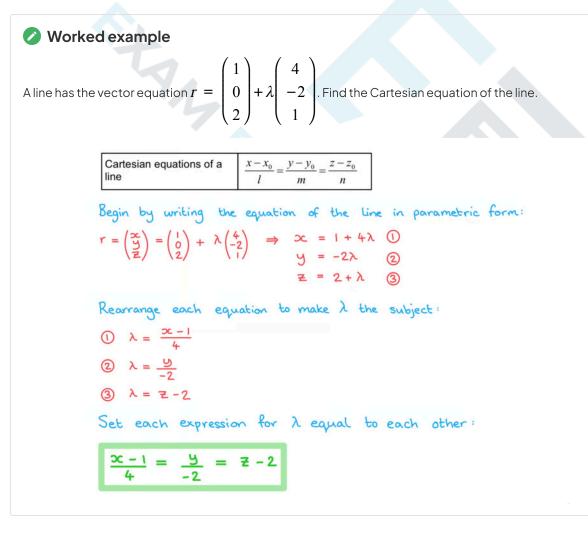
•
$$y = y_0 + \lambda m$$

 $z = z_0 + \lambda n$

• STEP 3: Write this in the vector form
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} l \\ m \\ n \end{pmatrix}$$

• STEP 4: Set *r* to equal $\begin{pmatrix} x \\ y \\ - \end{pmatrix}$

 If one part of the cartesian equation is given separately and is not in terms of λ then the corresponding component in the direction vector is equal to zero



3.10.2 Applications to Kinematics

Kinematics using Vectors

How are vectors related to kinematics?

- Vectors are often used in questions in the context of forces, acceleration or velocity
- If an object is moving in **one dimension** then its velocity, displacement and time are related using the formula s = vt
 - where s is **displacement**, v is **velocity** and t is the **time taken**
- If an object is moving in more than one dimension then vectors are needed to represent its velocity and displacement
 - Whilst time is a scalar quantity, displacement and velocity are both vector quantities
- For an object moving at a **constant speed** in a **straight line** its velocity, displacement and time can be related using the vector equation of a line
 - r=a+λb
 - Letting
 - r be the position of the object at the time, t
 - **a** be the position vector, r_0 at the start (t = 0)
 - λ represent the time, t
 - **b** be the **velocity** vector, **v**
 - Then the position of the object at the time, t can be given by
 - $r = r_0 + t v$
 - The speed of the object will be the magnitude of the velocity |v|

A car, moving at constant speed, takes 2 minutes to drive in a straight line from point A (-4, 3) to point B (6, -5).

At time t, in minutes, the position vector (**p**) of the car relative to the origin can be given in the form $\mathbf{p} = \mathbf{a} + t\mathbf{b}$.

Find the vectors **a** and **b**.

Vector <u>a</u> represents the initial position and vector <u>b</u> represents the direction vector per minute. Position vector $\overrightarrow{OA} = \begin{pmatrix} -4\\ 3 \end{pmatrix}$ At t = 0 minutes, $p = \underline{a}$ so $\underline{a} = \overrightarrow{OA} = \begin{pmatrix} -4\\ 3 \end{pmatrix}$ Position vector $\overrightarrow{OB} = \begin{pmatrix} -6\\ -5 \end{pmatrix}$ At t = 2 minutes, the car is at the point B and so $\overrightarrow{OB} = \underline{a} + 2\underline{b}$ $\begin{pmatrix} -6\\ -5 \end{pmatrix} = \begin{pmatrix} -4\\ -3 \end{pmatrix} + 2\underline{b}$ Direction vector $2\underline{b} = \begin{pmatrix} -6\\ -5 \end{pmatrix} - \begin{pmatrix} -4\\ -3 \end{pmatrix} = \begin{pmatrix} -6\\ -8 \end{pmatrix}$

II Ricillis Reserved

3.10.3 Pairs of Lines in 3D

Coincident, Parallel, Intersecting & Skew Lines

How do I tell if two lines are parallel?

- Two lines are parallel if, and only if, their **direction vectors** are **parallel**
 - This means the direction vectors will be **scalar multiples** of each other

• For example, the lines whose equations are
$$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ -7 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ 0 \\ -8 \end{pmatrix}$$
 and $\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$

are parallel

This is because
$$\begin{pmatrix} 2\\0\\-8 \end{pmatrix} = -2 \begin{pmatrix} -1\\0\\4 \end{pmatrix}$$

How do I tell if two lines are coincident?

- Coincident lines are two lines that lie directly on top of each other
 They are indistinguishable from each other
- Two parallel lines will either never intersect or they are coincident (identical)
 - Sometimes the vector equations of the lines may look different
 - for example, the lines represented by the equations $\mathbf{r} =$

$$\mathbf{r} = \begin{pmatrix} -3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \end{pmatrix} \text{ are coincident,}$$

- To check whether two lines are **coincident**:
 - First check that they are **parallel**

They are because
$$\begin{pmatrix} -4 \\ 8 \end{pmatrix} = -4 \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 and so their direction vectors are parallely

- Next, determine whether any point on one of the lines also lies on the othe
 - $\begin{pmatrix} 1 \\ -8 \end{pmatrix}$ is the position vector of a point on the first line and $\begin{pmatrix} 1 \\ -8 \end{pmatrix}$

el

and

so it also lies on the second line

• If two parallel lines share **any point**, then they share **all points** and are **coincident**

What are skew lines?

- Lines that are **not parallel** and which **do not intersect** are called **skew lines**
 - This is only possible in **3-dimensions**

How do I determine whether lines in 3 dimensions are parallel, skew, or intersecting?

- First, look to see if the direction vectors are parallel:
 - if the direction vectors are parallel, then the lines are parallel
 - if the direction vectors are not parallel, the lines are not parallel
- If the lines are **parallel**, check to see if the lines are **coincident**:
 - If they share any point, then they are coincident
 - If any point on one line is not on the other line, then the lines are not coincident
- If the lines are **not parallel**, check whether they **intersect**:
 - STEP 1: Set the vector equations of the two lines equal to each other with different variables
 e.g. λ and μ, for the parameters
 - STEP 2: Write the three separate equations for the **i**, **j**, and **k** components in terms of λ and μ
 - STEP 3: **Solve** two of the equations to find a value for λ and μ
 - STEP 4: **Check** whether the values of λ and μ you have found satisfy the third equation
 - If all three equations are satisfied, then the lines intersect
 - If **not all three** equations are satisfied, then the lines are **skew**

How do I find the point of intersection of two lines?

- If a pair of lines are not parallel and do intersect, a unique point of intersection can be found
 If the two lines intersect, there will be a single point that will lie on both lines
- Follow the steps above to find the values of λ and μ that satisfy all three equations
 - STEP 5: Substitute either the value of λ or the value of μ into one of the vector equations to find the
 position vector of the point where the lines intersect
 - It is always a good idea to check in the other equations as well, you should get the same point for each line

Worked example Determine whether the following pair of lines are parallel, intersect, or are skew. $\mathbf{r} = 4\mathbf{i} + 3\mathbf{j} + s(5\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ and $\mathbf{r} = -5\mathbf{i} + 4\mathbf{j} + \mathbf{k} + t(2\mathbf{i} - \mathbf{j})$. STEP 1: Check to see if the lines are parallel: $r_{1} = \begin{pmatrix} 4\\3\\0 \end{pmatrix} + \lambda \begin{pmatrix} 5\\2\\3 \end{pmatrix} r = \begin{pmatrix} -5\\4\\1 \end{pmatrix} + \mu \begin{pmatrix} 2\\-1\\0 \end{pmatrix}$ direction vectors The lines are not parallel because there is no value of k such that $\begin{pmatrix} 5\\2\\2 \end{pmatrix} = k \begin{pmatrix} 2\\-1\\0 \end{pmatrix}$ STEP 2: Check to see if the lines intersect: $4 + 5\lambda = -5 + 2\mu$ () Set up three equations $3+2\lambda=4-\mu$ (2) for each of the i, j and $3\lambda = 1$ (3) k components. Equation (3): $\lambda = \frac{1}{3}$ Sub into (2): $3 + 2(\frac{1}{3}) = 4 - \mu$ $\frac{11}{2} = 4 - \mu$ $\mathcal{M} = \frac{1}{3}$ Sub into (1): $4 + 5\left(\frac{1}{3}\right) = -5 + 2\left(\frac{1}{3}\right)$ $\frac{17}{3} \neq -\frac{13}{3}$ contradiction There is no point of intersection. The lines are skew

Angle Between Two Lines

How do we find the angle between two lines?

- The angle between two lines is equal to the angle between their direction vectors
 It can be found using the scalar product of their direction vectors
- Given two lines in the form $\boldsymbol{r} = \boldsymbol{a}_1 + \lambda \boldsymbol{b}_1$ and $\boldsymbol{r} = \boldsymbol{a}_2 + \lambda \boldsymbol{b}_2$ use the formula

$$\theta = \cos^{-1} \left(\frac{\boldsymbol{b}_1 \cdot \boldsymbol{b}_2}{|\boldsymbol{b}_1|| |\boldsymbol{b}_2|} \right)$$

- If you are given the equations of the lines in a different form or two points on a line you will need to find their direction vectors first
- To find the angle ABC the vectors BA and BC would be used, both starting from the point B
- The intersection of two lines will always create **two angles**, an acute one and an obtuse one
 - These two angles will add to 180°
 - You may need to subtract your answer from 180° to find the angle you are looking for
 - A positive scalar product will result in the acute angle and a negative scalar product will result in the obtuse angle
 - Using the absolute value of the scalar product will always result in the acute angle

Eights Reserved

Worked example

Find the acute angle, in radians between the two lines defined by the equations:

 $I_1: \mathbf{a} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-4\\-3 \end{pmatrix} \text{ and } I_2: \mathbf{b} = \begin{pmatrix} 1\\-4\\3 \end{pmatrix} + \mu \begin{pmatrix} -3\\2\\5 \end{pmatrix}$ STEP 1: Find the scalar product of the direction vectors: $\begin{pmatrix} 1\\-4\\-3 \end{pmatrix} \cdot \begin{pmatrix} -3\\2\\5 \end{pmatrix} = (1 \times -3) + (-4 \times 2) + (-3 \times 5) = -3 + (-8) + (-15) = -26$ negative, so the angle will be the obtuse angle. STEP 2: Find the magnitudes of the direction vectors: $\sqrt{(1)^2 + (-4)^2 + (-3)^2} = \sqrt{26}$ $\sqrt{(-3)^2 + (2)^2 + (5)^2} = \sqrt{38}$ STEP 3: Find the angle: $\cos \theta = \frac{|-26|}{\sqrt{26}\sqrt{38}}$ Using the absolute value will result in the acute angle $\theta = \cos^{-1}\left(\frac{26}{\sqrt{26}\sqrt{38}}\right)$ Kiellis Reconcer $\theta = 0.597$ radians (3sf)

3.10.4 Shortest Distances with Lines

Shortest Distance Between a Point and a Line

How do I find the shortest distance from a point to a line?

- The shortest distance from any point to a line will always be the **perpendicular** distance
 - Given a line *I* with equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and a point *P* not on *I*
 - The scalar product of the direction vector, b, and the vector in the direction of the shortest distance will be zero
- The shortest distance can be found using the following steps:
 - STEP 1: Let the vector equation of the line be r and the point not on the line be P, then the point on the line closest to P will be the point F
 - The point F is sometimes called the foot of the perpendicular
 - STEP 2: Sketch a diagram showing the line *l* and the points *P* and *F*
 - The vector \overrightarrow{FP} will be **perpendicular** to the line /
 - STEP 3: Use the equation of the line to find the position vector of the point F in terms of λ
 - STEP 4: Use this to find the displacement vector FP in terms of λ
 - STEP 5: The scalar product of the direction vector of the line *l* and the displacement vector *FP* will be zero
 - Form an equation $\vec{FP} \cdot \mathbf{b} = 0$ and solve to find λ
 - STEP 6: Substitute λ into \overrightarrow{FP} and find the magnitude $\left|\overrightarrow{FP}\right|$
 - The shortest distance from the point to the line will be the magnitude of $F\!P$
- Note that the shortest distance between the point and the line is sometimes referred to as the **length** of the perpendicular

How do we use the vector product to find the shortest distance from a point to a line?

- The vector product can be used to find the shortest distance from any point to a line on a 2dimensional plane
- Given a point, P, and a line $r = a + \lambda b$
 - The shortest distance from P to the line will be
- $e \frac{\left| \overrightarrow{AP} \times b \right|}{\left| b \right|}$
 - Where A is a point on the line
 - This is **not** given in the formula booklet

Worked example

Point *A* has coordinates (1, 2, 0) and the line *I* has equation
$$\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
.

Point B lies on the l such that [AB] is perpendicular to l.

Find the shortest distance from A to the line I.

B is on L so can be written in terms of
$$\lambda$$
:
 $\vec{OB} = \begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ \lambda \\ 6+2\lambda \end{pmatrix}$
Find \vec{AB} using $\vec{AB} = \vec{OB} - \vec{OA}$
 $\vec{AB} = \begin{pmatrix} 2 \\ \lambda \\ 6+2\lambda \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ \lambda - 2 \\ 6+2\lambda \end{pmatrix}$
 \vec{AB} is perpendicular to L : $\vec{AB} \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = 0$
 $\begin{pmatrix} 1 \\ \lambda - 2 \\ 6+2\lambda \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = 0$
 $\lambda - 2 + 2 (6 + 2\lambda) = 0$
 $5\lambda + 10 = 0$
 $\lambda = -2$

Substitute back into \overrightarrow{AB} and find the magnitude:

$$\vec{AB} = \begin{pmatrix} 1 \\ -2-2 \\ 6+2(-2) \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix}$$
$$\left| \vec{AB} \right| = \sqrt{1^2 + (-4)^2 + 2^2} = \sqrt{21}$$

Shortest distance = $\sqrt{21}$ units

Shortest Distance Between Two Lines

How do we find the shortest distance between two parallel lines?

- Two parallel lines will never intersect
- The shortest distance between two **parallel lines** will be the **perpendicular distance** between them
 - Given a line I_1 with equation $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ and a line I_2 with equation $\mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$ then the shortest distance between them can be found using the following steps:
 - STEP 1: Find the vector between \mathbf{a}_1 and a general coordinate from l_2 in terms of μ
 - STEP 2: Set the scalar product of the vector found in STEP 1 and the direction vector d₁ equal to zero
 - Remember the direction vectors **d**₁ and **d**₂ are scalar multiples of each other and so either can be used here
 - STEP 3: Form and solve an equation to find the value of μ
 - STEP 4: Substitute the value of μ back into the equation for l_2 to find the coordinate on l_2 closest to l_1
 - STEP 5: Find the distance between \mathbf{a}_1 and the coordinate found in STEP 4
- Alternatively, the formula $\frac{|\vec{AB} \times \mathbf{d}|}{|\mathbf{d}|}$ can be used
 - Where AB is the vector connecting the two given coordinates \mathbf{a}_1 and \mathbf{a}_2
 - **d** is the simplified vector in the direction of \mathbf{d}_1 and \mathbf{d}_2
 - This is not given in the formula booklet

How do we find the shortest distance from a given point on a line to another line?

- The shortest distance from any point on a line to another line will be the perpendicular distance from the point to the line
- If the angle between the two lines is known or can be found then right-angled trigonometry can be used to find the perpendicular distance
 - The formula $\frac{|AB \times \mathbf{d}|}{|\mathbf{d}|}$ given above is derived using this method and can be used
- Alternatively, the equation of the line can be used to find a general coordinate and the steps above can be followed to find the shortest distance

How do we find the shortest distance between two skew lines?

- Two skew lines are not parallel but will never intersect
- The shortest distance between two **skew lines** will be perpendicular to **both** of the lines
 - This will be at the point where the two lines pass each other with the perpendicular distance where the point of intersection would be
 - The **vector product** of the two direction vectors can be used to find a vector in the direction of the shortest distance
 - The shortest distance will be a vector **parallel** to the vector product
- To find the shortest distance between two skew lines with equations $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ and $\mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$,
 - STEP 1: Find the vector product of the direction vectors \mathbf{d}_1 and \mathbf{d}_2

$$\mathbf{d} = \mathbf{d}_1 \times \mathbf{d}_2$$

• STEP 2: Find the vector in the direction of the line between the two general points on I_1 and I_2 in

terms of λ and μ

$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$$

- STEP 3: Set the two vectors parallel to each other
 - $k\mathbf{d} = \overrightarrow{AB}$
- STEP 4: Set up and solve a system of linear equations in the three unknowns, k, λ and μ

Reserved

Worked example

Consider the skew lines $I_1^{}$ and $I_2^{}$ as defined by:

 $I_1: \mathbf{r} = \begin{pmatrix} 6\\ -4\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix}$

$$I_2: \mathbf{r} = \begin{pmatrix} -5\\4\\-8 \end{pmatrix} + \mu \begin{pmatrix} -1\\2\\1 \end{pmatrix}$$

Find the minimum distance between the two lines.

Conce. All Rights Reserved

Find the vector product of the direction vectors.

$$\begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \times \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} (-3)(1) - (4)(2) \\ (4)(-1) - (2)(1) \\ (2)(2) - (-3)(-1) \end{pmatrix} = \begin{pmatrix} -11 \\ -6 \\ 1 \end{pmatrix}$$

Find the vector in the direction of the line between the general coordinates.

$$\overrightarrow{AB} = \begin{pmatrix} -5 - \mu \\ 4 + 2\mu \\ -8 + \mu \end{pmatrix} - \begin{pmatrix} 6 + 2\lambda \\ -4 - 3\lambda \\ 3 + 4\lambda \end{pmatrix} = \begin{pmatrix} -1| -\mu - 2\lambda \\ 8 + 2\mu + 3\lambda \\ -1| + \mu - 4\lambda \end{pmatrix}$$

A point on l_2 A point on l_1

$$\begin{pmatrix} -||-\mu - 2\lambda \\ 8 + 2\mu + 3\lambda \\ -||+\mu - 4\lambda \end{pmatrix} = \begin{pmatrix} k \\ -6 \\ l \end{pmatrix} \quad \overrightarrow{AB} \text{ is parallel to } \begin{pmatrix} -|| \\ -6 \\ l \end{pmatrix} \\ \text{ so } \overrightarrow{AB} = k \begin{pmatrix} -|| \\ -6 \\ l \end{pmatrix}$$

Set up and solve a system of equations.

$$\begin{array}{c} ||k - 2\lambda - \mu = || \\ 6k + 3\lambda + 2\mu = -8 \\ \mu - 4\lambda - k = || \end{array} \right\} \begin{array}{c} \text{Solve using GDC:} \\ k = \frac{31}{79} \quad \lambda = -\frac{238}{79} \quad \mu = -\frac{52}{79} \\ \end{array}$$

Substitute back into the expression for \overrightarrow{AB} and find the magnitude:

$$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = \begin{vmatrix} -11 - \left(-\frac{52}{79}\right) - 2\left(-\frac{238}{79}\right) \\ 8 + 2\left(-\frac{52}{79}\right) + 3\left(-\frac{238}{79}\right) \\ -11 + \left(-\frac{52}{79}\right) - 4\left(-\frac{238}{79}\right) \end{vmatrix} = \begin{vmatrix} -\frac{341}{79} \\ -\frac{186}{79} \\ \frac{31}{79} \end{vmatrix} = \sqrt{\left(-\frac{341}{79}\right)^2 + \left(-\frac{186}{79}\right)^2 + \left(-\frac{31}{79}\right)^2} \\ -\frac{186}{79} \\ \frac{31}{79} \end{vmatrix}$$

Shortest distance = 4.93 units (3s.f.)