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3.10.1 Vector Equations of Lines

Equation of a Line in Vector Form

How do I �nd t he vect or equat ion of  a line?

The fo rmula fo r �nding the vecto r equatio n o f a line is

r=a+λb
Where r is the po sitio n vecto r o f any po int o n the line

a is the po sitio n vecto r o f a kno wn po int o n the line

b is a directio n (displacement) vecto r

λ  is a scalar

This is given in the f o rmula bo o klet

This equatio n can be used fo r vecto rs in bo th 2− and 3− dimensio ns

This fo rmula is similar to  a regular equatio n o f a straight line in the fo rm y=mx+c  but with a

vecto r to  sho w bo th a po int o n the line and the directio n (o r gradient) o f the line

In 2D the gradient can be fo und fro m the directio n vecto r

In 3D a numerical value fo r the directio n canno t be fo und, it is given as a vecto r

As a co uld be the po sitio n vecto r o f any  po int o n the line and b co uld be any scalar multiple  o f

the directio n vecto r there are in�nite vecto r equatio ns fo r a single line

Given any two  po ints o n a line with po sitio n vecto rs a and b the displacement  vecto r can be

written as b - a

So  the fo rmula r = a +λ(b - a) can be used to  �nd the vecto r equatio n o f the line

This is no t given in the f o rmula bo o klet

How do I det erm ine whet her a point  lies on a line?

Given the equatio n o f a line r =
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This means that there exists a single value o f λ that satis�es the three equatio ns:

c1= a1+λb1

Page 1 of 23
For more help visit our website www.exampaperspractice.co.uk



   

c2= a2+λb2
c3= a3+λb3

A GDC can be used to  so lve this system o f linear equatio ns fo r

The po int o nly lies o n the line if a single value o f λ  exists fo r all three equatio ns

So lve o ne o f the equatio ns �rst to  �nd a value o f λ that satis�es the �rst equatio n and then

check that this value also  satis�es the o ther two  equatio ns

If the value o f λ  do es no t satisfy all three equatio ns, then the po int c do es no t lie o n the line

Exam T ip

Remember that the vecto r equatio n o f a line can take many di�erent fo rms

This means that the answer yo u derive might lo o k di�erent fro m the answer in a mark

scheme

Yo u can cho o se whether to  write yo ur vecto r equatio ns o f lines using unit vecto rs o r as

co lumn vecto rs

Use the fo rm that yo u prefer, ho wever co lumn vecto rs is generally easier to  wo rk with
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a)

b)

Worked example

Find a vecto r equatio n o f a straight line thro ugh the po ints with po sitio n vecto rs a = 4i – 5k

and b = 3i - 3k

Determine whether the po int C with co o rdinate (2, 0, -1) lies o n this line.
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Equation of a Line in Parametric Form

How do I �nd t he vect or equat ion of  a line in param et ric f orm ?

By co nsidering the three separate co mpo nents o f a vecto r in the x, y and  z directio ns it is

po ssible to  write the vecto r equatio n o f a line as three separate equatio ns
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This vecto r equatio n can then be split into  its three separate co mpo nent fo rms:

x= x0+ λl
y= y0+ λm
z= z0+ λn

These are given in the f o rmula bo o klet

Worked example

Write the parametric fo rm o f the equatio n o f the line which passes thro ugh the po int (-2, 1, 0) with

directio n vecto r 
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Equation of a Line in Cartesian Form

The Cartesian equatio n o f a line can be fo und fro m the vecto r equatio n o f  a line by

Finding the vecto r equatio n o f the line in parametric fo rm

Eliminating λ  fro m the parametric equatio ns

λ  can be eliminated by making it  the subject o f each o f the parametric equatio ns

Fo r example: x= x0+ λl gives  λ=
x− x0

l
In 2D the cartesian equatio n o f  a line is a regular equatio n o f a straight line simply given in the fo rm

y=mx+c
ax+by+d=0
y−y1
y2−y1

=
x−x1
x2−x1

 by rearranging y−y1=m
( )
x−x1

In 3D the cartesian equatio n o f  a line also  includes z and is given in the fo rm

x− x0
l

=
y− y0
m

=
z− z0

n
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This is given in the f o rmula bo o klet

If o ne o f yo ur variables do es no t depend o n λ then this part can be written as a separate

equatio n

Fo r example: m=0 ⇒y= y0 gives 

x− x0
l

=
z− z0

n
, y= y0

How do I �nd t he vect or equat ion of  a line g iven t he Cart esian f orm ?

If yo u are given the Cartesian equatio n o f a line in the fo rm

x− x0
l

=
y− y0
m

=
z− z0

n
A vecto r equatio n o f the line can be fo und by

STEP 1: Set each part o f the equatio n equal to  λ individually

STEP 2: Rearrange each o f these three equatio ns (o r two  if wo rking in 2D) to  make x, y, and z

the subjects

This will give yo u the three parametric equatio ns
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x= x0+ λl
y= y0+ λm
z= z0+ λn

STEP 3: Write this in the vecto r fo rm 
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STEP 4: Set r  to  equal 
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If o ne part o f the cartesian equatio n is given separately and is no t in terms o f λ  then the

co rrespo nding co mpo nent in the directio n vecto r is equal to  z ero

Worked example

A line has the vecto r equatio n r =
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. Find the Cartesian equatio n o f the line.
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3.10.2 Applications to Kinematics

Kinematics using Vectors

How are vect ors relat ed t o kinem at ics?

Vecto rs are o ften used in questio ns in the co ntext o f fo rces, acceleratio n o r velo city

If an o bject is mo ving in o ne dimensio n then its velo city, displacement and time are related using

the fo rmula s = vt

where s is displacement , v is velo city  and t is the time taken

If an o bject is mo ving in mo re than o ne dimensio n then vecto rs are needed to  represent its

velo city  and displacement

Whilst time  is a scalar quantity, displacement and velo city  are bo th vecto r quantities

Fo r an o bject mo ving at a co nstant speed  in a straight line  its velo city, displacement and time

can be related using the vecto r equatio n o f a line

r = a + λb

Letting

r be the po sitio n o f the o bject at the time, t

a be the po sitio n vecto r, r  at the start (t = 0)

λ represent the time, t

b be the velo city  vecto r, v

Then the po sitio n o f the o bject at the time, t can be given by

r = r + t v

The speed o f the o bject will be the magnitude o f the velo city |v |

Exam T ip

Kinematics questio ns can have a lo t o f info rmatio n in, read them carefully and pick o ut the

parts that are essential to  the questio n

Lo o k o ut fo r where variables used are the same and/o r di�erent within vecto r equatio ns, yo u

will need to  use di�erent techniques to  �nd these

0

0 
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Worked example

A car, mo ving at co nstant speed, takes 2 minutes to  drive in a straight line fro m po int A (-4, 3) to

po int B (6, -5).

At time t, in minutes, the po sitio n vecto r (p) o f the car relative to  the o rigin can be given in the fo rm 

p=a+ tb . 

Find the vecto rs a and b.
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3.10.3 Pairs of Lines in 3D

Coincident, Parallel, Intersecting & Skew Lines

How do I t ell if  t wo lines are parallel?

Two  lines are parallel if, and o nly if, their directio n vecto rs are parallel

This means the directio n vecto rs will be scalar multiples  o f each o ther

Fo r example, the lines who se equatio ns are r=
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This is because 
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How do I t ell if  t wo lines are coincident ?

Co incident lines are two  lines that lie directly o n to p o f each o ther

They are indistinguishable fro m each o ther

Two  parallel lines will either never intersect  o r they are co incident (identical)

So metimes the vecto r equatio ns o f the lines may lo o k di�erent

fo r example, the lines represented by the equatio ns r=
⎛
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⎜
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⎜
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 are co incident ,

To  check whether two  lines are co incident :

First check that they are parallel

They are because 
⎛
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⎜
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 and so  their directio n vecto rs are parallel     

Next, determine whether any po int o n o ne o f the lines also  lies o n the o ther
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⎠
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 so  it also  lies o n the seco nd line

If two  parallel lines share any po int , then they share all po ints  and are co incident

 What  are skew lines?

Lines that are no t parallel and which do  no t intersect  are called skew lines

This is o nly po ssible in 3−dimensio ns

How do I det erm ine whet her lines in 3 dim ensions are parallel, skew, or
int ersect ing ?

First, lo o k to  see if the directio n vecto rs are parallel:

if the directio n vecto rs are parallel, then the lines are parallel

if the directio n vecto rs are no t parallel, the lines are no t parallel

If the lines are parallel, check to  see if the lines are co incident :

If they share any po int , then they are co incident

If any po int  o n o ne line is no t o n the o ther line, then the lines are no t co incident

If the lines are no t parallel, check whether they intersect :

STEP 1: Set the vecto r equatio ns o f the two  lines equal to  each o ther with di�erent variables

e.g. λ and μ, fo r the parameters

STEP 2: Write the three separate equatio ns fo r the i, j, and k co mpo nents in terms o f λ and μ
STEP 3: So lve  two  o f the equatio ns to  �nd a value fo r λ and μ
STEP 4: Check whether the values o f λ and μ yo u have fo und satisfy the third equatio n

If all three  equatio ns are satis�ed, then the lines intersect

If no t all three  equatio ns are satis�ed, then the lines are skew

How do I �nd t he point  of  int ersect ion of  t wo lines?

If a pair o f lines are no t parallel and do  intersect , a unique po int o f intersectio n can be fo und

If the two  lines intersect, there will be a single po int that will lie o n bo th lines

Fo llo w the steps abo ve to  �nd the values o f λ and μ that satisfy all three equatio ns

STEP 5: Substitute either the value o f λ o r the value o f μ into  o ne o f the vecto r equatio ns to

�nd the po sitio n vecto r o f the po int where the lines intersect

It is always a go o d idea to  check in the o ther equatio ns as well, yo u sho uld get the same

po int fo r each line

Exam T ip

Make sure that yo u use di�erent letters, e.g.  and , to  represent the parameters in vecto r

equatio ns o f di�erent lines

Check that the variable yo u are using has no t already been used in the questio n
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Worked example

Determine whether the fo llo wing pair o f lines are parallel, intersect, o r are skew.

r=4i+3j+s ( )5i+2j+3k  and r=−5i+4j+k+ t ( )2i− j .
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Angle Between Two Lines

How do we �nd t he ang le bet ween t wo lines?

The angle between two  lines is equal to  the angle between their directio n vecto rs

It can be fo und using the scalar pro duct  o f their directio n vecto rs

Given two  lines in the fo rm r=a1+λb1 and r=a2+λb2 use the fo rmula

θ=cos−1
⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟

⎠

b 1 ∙ b 2












b 1












b 2
If yo u are given the equatio ns o f the lines in a di�erent fo rm o r two  po ints o n a line yo u will need to

�nd their directio n vecto rs �rst

To  �nd the angle ABC the vecto rs BA and BC wo uld be used, bo th starting fro m the po int B

The intersectio n o f two  lines will always create two  angles, an acute o ne and an o btuse o ne

These two  angles will add to  180°

Yo u may need to  subtract yo ur answer fro m 180° to  �nd the angle yo u are lo o king fo r

A po sitive scalar pro duct  will result in the acute angle and a negative scalar pro duct will

result in the o btuse angle

Using the abso lute value o f the scalar pro duct will always result in the acute angle

Exam T ip

In yo ur exam read the questio n carefully to  see if yo u need to  �nd the acute o r o btuse angle

When revising, get into  the practice o f do uble checking at the end o f a questio n whether

yo ur angle is acute o r o btuse and whether this �ts the questio n

Worked example

Find the acute angle, in radians between the two  lines de�ned by the equatio ns:

l1: a=
⎛
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⎜
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⎜
⎜
⎜
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⎞
⎟
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⎟
⎟
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⎛
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⎜
⎜
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⎟
⎟
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 and  l2: b =
⎛
⎜
⎜
⎜
⎜
⎜
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⎜
⎜
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⎟
⎟
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

−3
2
5
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3.10.4 The Vector Product

The Vector ('Cross') Product

What  is t he vect or (cross) product ?

The vecto r pro duct  (also  kno wn as the cro ss  pro duct) is a fo rm in which two  vecto rs can be

co mbined to gether

The vecto r pro duct between two  vecto rs v and w is deno ted v × w

The result o f taking the vecto r pro duct o f two  vecto rs is a vecto r

The vecto r pro duct  is a vecto r in a plane that is perpendicular to  the two  vecto rs fro m which it

was calculated

This co uld be in either directio n, depending o n the angle between the two  vecto rs

The right-hand rule helps yo u see which directio n the vecto r pro duct go es in

By po inting yo ur index �nger and yo ur middle �nger in the directio n o f the two  vecto rs

yo ur thumb will auto matically go  in the directio n o f the vecto r pro duct

How do I �nd t he vect or (cross) product ?

There are two  metho ds fo r calculating the vecto r pro duct
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The vecto r pro duct o f the two  vecto rs v and w can be written in co mpo nent f o rm as fo llo ws:

v×w=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

v 2w3− v 3w2

v 3w1− v 1w3

v 1w2− v 2w1

Where v =
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

v1
v2
v3

 and w=
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

w1

w2

w3
This is given in the f o rmula bo o klet

The vecto r pro duct can also  be fo und in terms o f its magnitude and directio n

The magnitude o f  the vecto r pro duct is equal to  the pro duct o f  the magnitudes  o f the two

vecto rs and the sine o f  the angle between them

|v×w | = 







v 







w sinθ
Where θ is the angle between v and w

The two  vecto rs v and w are jo ined at the start and po inting away fro m each o ther

This is given in the f o rmula bo o klet

The directio n o f  the vecto r pro duct is perpendicular to  bo th v and w

What  propert ies of  t he vect or product  do I need t o know?

The o rder o f the vecto rs is impo rtant and  changes the result  o f the vecto r pro duct

v×w≠ w×v
Ho wever

v×w= −w×v
The distributive law can be used to  ‘expand brackets’

u× ( )v +w = u×v+ u×w
Where u, v and  w are all vecto rs

Multiplying a scalar by a vecto r gives the result:

( )kv ×w= v× ( )kw =k (v×w)

The vecto r pro duct between a vecto r and itself is equal to  z ero

v×v=0
If two  vecto rs are parallel then the vecto r pro duct is z ero

This is because sin 0° = sin 180° = 0

If v×w=0 then v and w are parallel if they are no n-z ero

If two  vecto rs, v and  w, are perpendicular then the magnitude o f the vecto r pro duct is equal to

the pro duct o f the magnitudes o f the vecto rs

|v×w | = |w | |v|

This is because sin 90° = 1

Exam T ip

The fo rmulae fo r the vecto r pro duct are given in the fo rmula bo o klet, make sure yo u use them

as this is an easy fo rmula to  get wro ng

The pro perties o f the vecto r pro duct are no t given in the fo rmula bo o klet, ho wever they are

impo rtant and it is likely that yo u will need to  recall them in yo ur exam so  be sure to  co mmit

them to  memo ry
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i)

ii)

Worked example

Calculate the magnitude o f the vecto r pro duct between the two  vecto rs v = ⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

2
0
−5

and 

w=3i−2j−k using

the fo rmula v×w=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

v 2w3− v 3w2

v 3w1− v 1w3

v 1w2− v 2w1

,

the fo rmula , given that the angle between them is 1 radian.
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Areas using Vector Product

How do I use t he vect or product  t o �nd t he area of  a parallelog ram ?

The area o f  the parallelo gram with two  adjacent sides fo rmed by the vecto rs v and w is equal to

the magnitude o f  the vecto r pro duct  o f two  vecto rs v and w

A= 







v × w where v and w fo rm two  adjacent sides o f the parallelo gram

This is given in the f o rmula bo o klet

How do I use t he vect or product  t o �nd t he area of  a t riang le?

The area o f  the triangle with two  sides fo rmed by the vecto rs v and w is equal to  half  o f the

magnitude o f  the vecto r pro duct  o f two  vecto rs v and w

A=
1
2









v × w where v and w fo rm two  sides o f the triangle

This is no t given in the fo rmula bo o klet

Exam T ip

The fo rmula fo r the area o f the parallelo gram is given in the fo rmula bo o klet but the fo rmula

fo r the area o f a triangle is no t

Remember that the area o f a triangle is half the area o f a parallelo gram
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Worked example

Find the area o f the triangle enclo sed by the co o rdinates (1, 0, 5), (3, -1, 2) and (2, 0, -1).
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3.10.5 Shortest Distances with Lines

Shortest Distance Between a Point and a Line

How do I �nd t he short est  dist ance f rom  a point  t o a line?

The sho rtest distance fro m any po int to  a line will always be the perpendicular distance

Given a line l with equatio n r = a+λb  and a po int P no t o n l

The scalar pro duct  o f the directio n vecto r, b, and the vecto r in the directio n o f the sho rtest

distance will be z ero

The sho rtest distance can be fo und using the fo llo wing steps:

STEP 1: Let the vecto r equatio n o f the line be r and the po int no t o n the line be P, then the po int

o n the line clo sest to  P will be the po int F

The po int F is so metimes called the fo o t o f the perpendicular

STEP 2: Sketch a diagram sho wing the line l and the po ints P and F

The vecto r 
⎯⎯⎯FP  will be perpendicular to  the line l

STEP 3: Use the equatio n o f the line to  �nd the po sitio n vecto r o f the po int F  in terms o f λ

STEP 4: Use this to  �nd the displacement vecto r 
⎯⎯⎯FP  in terms o f λ

STEP 5: The scalar pro duct o f the directio n vecto r o f the line l and the displacement vecto r 
⎯⎯⎯FP  will be z ero

Fo rm an equatio n 
⎯⎯⎯FP · b=0  and so lve to  �nd λ

STEP 6: Substitute λ into  
⎯⎯⎯FP  and �nd the magnitude 











⎯⎯⎯FP
The sho rtest distance fro m the po int to  the line will be the magnitude o f 

⎯⎯⎯FP
No te that the sho rtest distance between the po int and the line is so metimes referred to  as the

length o f  the perpendicular

How do we use t he vect or product  t o �nd t he short est  dist ance f rom  a point  t o a
line?
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The vecto r pro duct can be used to  �nd the sho rtest distance fro m any po int to  a line o n a 2−

dimensio nal plane

Given a po int, P, and a line r = a + λb

The sho rtest distance fro m P to  the line will be











⎯⎯⎯AP×b








b
Where A is a po int o n the line

This is no t given in the fo rmula bo o klet

Exam T ip

Co lumn vecto rs can be easier and clearer to  wo rk with when dealing with scalar pro ducts.
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Worked example

Po int A  has co o rdinates (1, 2, 0) and the line l has equatio n r=
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

2
0
6
+λ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

0
1
2

. 

Po int B lies o n the l  such that 
⎡
⎢
⎣

⎤
⎥
⎦

AB  is perpendicular to  l .

Find the sho rtest distance fro m A to  the line l .
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Shortest Distance Between Two Lines

How do we �nd t he short est  dist ance bet ween t wo parallel lines?

Two  parallel lines will never intersect

The sho rtest distance between two  parallel lines  will be the perpendicular distance between

them

Given a line l1 with equatio n r= a1+λd1and a line l2 with equatio n r= a2+μd2 then the

sho rtest distance between them can be fo und using the fo llo wing steps:

STEP 1: Find the vecto r between a1 and a general co o rdinate fro m l2 in terms o f μ 

STEP 2: Set the scalar pro duct o f the vecto r fo und in STEP 1 and the directio n vecto r d1equal

to  z ero

Remember the directio n vecto rs d1 and d2 are scalar multiples o f each o ther and so

either can be used here

STEP 3: Fo rm and so lve an equatio n to  �nd the value o f μ

STEP 4: Substitute the value o f μ back into  the equatio n fo r l2 to  �nd the co o rdinate o n l2
clo sest to  l1
STEP 5: Find the distance between a1 and the co o rdinate fo und in STEP 4

Alternatively, the fo rmula 











⎯⎯⎯

AB×d






d

 can be used

Where 
⎯⎯⎯

AB is the vecto r co nnecting the two  given co o rdinates a1and a2
d is the simpli�ed vecto r in the directio n o f d1 and d2
This is no t given in the fo rmula bo o klet

How do we �nd t he short est  dist ance f rom  a g iven point  on a line t o anot her line?

The sho rtest distance fro m any po int o n a line to  ano ther line will be the perpendicular distance

fro m the po int to  the line

If the angle between the two  lines is kno wn o r can be fo und then right-angled trigo no metry can

be used to  �nd the perpendicular distance

The fo rmula 











⎯⎯⎯

AB×d






d

 given abo ve is derived using this metho d and can be used

Alternatively, the equatio n o f the line can be used to  �nd a general co o rdinate and the steps

abo ve can be fo llo wed to  �nd the sho rtest distance

How do we �nd t he short est  dist ance bet ween t wo skew lines?

Two  skew lines are no t parallel but will never intersect

The sho rtest distance between two  skew lines  will be perpendicular to  bo th o f the lines
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This will be at the po int where the two  lines pass each o ther with the perpendicular distance

where the po int o f intersectio n wo uld be

The vecto r pro duct o f the two  directio n vecto rs can be used to  �nd a vecto r in the

directio n o f the sho rtest distance

The sho rtest distance will be a vecto r parallel to  the vecto r pro duct

To  �nd the sho rtest distance between two  skew lines with equatio ns r= a1+λd1 and 

r= a2+μd2 ,

STEP 1: Find the vecto r pro duct o f the directio n vecto rs d1 and d2
d = d1 × d2

STEP 2: Find the vecto r in the directio n o f the line between the two  general po ints o n l1 and l2
 in terms o f λ and μ

⎯⎯⎯⎯AB = b − a
STEP 3: Set the two  vecto rs parallel to  each o ther

d = k⎯⎯⎯⎯AB
STEP 4: Set up and so lve a system o f linear equatio ns in the three unkno wns, k, λ and μ

Exam T ip

Exam questio ns will o ften ask fo r the sho rtest, o r minimum, distance within vecto r questio ns

If yo u’re unsure start by sketching a quick diagram

So metimes calculus can be used, ho wever usually vecto r metho ds are required
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Worked example

Co nsider the skew lines l1 and l2 as de�ned by:

l1 : r=
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

6
−4
3

+λ
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

2
−3
4

l2 : r=
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

−5
4
−8

+μ
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

−1
2
1

Find the minimum distance between the two  lines.
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