Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

### 3.10 Vector Equations of Lines



Exam Papers Practice

### 3.10.1 Vector Equations of Lines

## Equation of a Line in Vector Form

## Howdolfind the vector equation of a line?

- The formula for finding the vector equation of a line is
- $\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}$
- Where $r$ is the position vector of any point on the line
- a is the position vector of a known point on the line
- bis a direction(displacement) vector
- $\lambda$ is a scalar
- This is given in the formula booklet
- This equation can be used forvectors in both 2 - and 3-dimensions
- This formula is similar to a regular equatio n of a straight line in the form $y=m x+c$ but with a vector to show both a point on the line and the direction (or gradient) of the line
- In 2D the gradient can be found from the directionvector
- In 3D a numerical value forthe direction cannot be found, it is given as a vector
- As acould be the positionvector of any point on the line and bcould be any scalar multiple of the direction vector there are infinite vector equations for a single line
- Given anytwo points on a line with position vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ the displacement vector can be written as $\boldsymbol{b}$ - $\boldsymbol{a}$
- So the formula $\mathbf{r}=\mathbf{a}+\lambda(\mathbf{b}-\mathbf{a})$ can be used to find the vector equation of the line
- This is not given in the formula booklet


## Howdoldetermine whether a point lies on a line?

- Given the equation of a line $\boldsymbol{r}=\left(\begin{array}{c}\boldsymbol{a}_{1} \\ \boldsymbol{a}_{2} \\ \boldsymbol{a}_{3}\end{array}\right)+\lambda\left(\begin{array}{c}\boldsymbol{b}_{1} \\ \boldsymbol{b}_{2} \\ \boldsymbol{b}_{3}\end{array}\right)$ the point $\boldsymbol{c}$ with position vector $\left(\begin{array}{c}\boldsymbol{c}_{1} \\ \boldsymbol{c}_{2} \\ \boldsymbol{c}_{3}\end{array}\right)$ is
on the line if there exists a value of $\lambda$ such that
$\left(\begin{array}{l}\boldsymbol{c}_{1} \\ \boldsymbol{c}_{2} \\ \boldsymbol{c}_{3}\end{array}\right)=\left(\begin{array}{l}\boldsymbol{a}_{1} \\ \boldsymbol{a}_{2} \\ \boldsymbol{a}_{3}\end{array}\right)+\lambda\left(\begin{array}{l}\boldsymbol{b}_{1} \\ \boldsymbol{b}_{2} \\ \boldsymbol{b}_{3}\end{array}\right)$
- This means that there exists a single value of $\lambda$ that satisfies the three equations:
- $c_{1}=a_{1}+\lambda b_{1}$
- $c_{2}=a_{2}+\lambda b_{2}$
- $c_{3}=a_{3}+\lambda b_{3}$
- A GDC can be used to solve this system of linear equations for
- The point onlylies on the line if a single value of $\lambda$ exists for all three equations
- Solve one of the equations first to find a value of $\lambda$ that satisfies the first equation and then check that this value also satisfies the other two equations
- If the value of $\lambda$ does not satisfy all three equations, then the point $\boldsymbol{c}$ does not lie on the line


## O Exam Tip

- Remember that the vector equation of a line can take many different forms
- This means that the answeryou derive might look different from the answerin a mark scheme
- You can choose whether to write your vector equations of lines using unit vectors or as column vectors
- Use the form that you prefer, however column vectors is generally easierto work with

Exam Papers Practice
© 2024 Exam Papers Practice

## Worked example

a) Find a vector equation of a straight line through the points with position vectors $\mathbf{a}=4 \mathbf{i}-5 \mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}-3 \mathbf{k}$

$$
\begin{aligned}
& \text { Use the position vectors to find the displacement vector } \\
& \text { between them. } \\
& \overrightarrow{O A}=\left(\begin{array}{c}
4 \\
0 \\
-5
\end{array}\right), \overrightarrow{O B}=\left(\begin{array}{c}
3 \\
0 \\
-3
\end{array}\right) \Rightarrow \overrightarrow{A B}=\left(\begin{array}{c}
3 \\
0 \\
-3
\end{array}\right)-\left(\begin{array}{c}
4 \\
0 \\
-5
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right) \\
& \begin{array}{ll}
\text { position vector } & \text { position vector } \\
\downarrow \text { of point } a & \downarrow \text { of point } b
\end{array} \\
& r=\left(\begin{array}{c}
4 \\
0 \\
-5
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)_{\kappa_{\text {direction }}} \text { or } \\
& \text { vector } \\
& r=\left(\begin{array}{r}
4 \\
0 \\
-5
\end{array}\right)+\lambda\left(\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right)
\end{aligned}
$$

b) Determine whether the point C with coordinate (2, $0,-1$ ) lies on this line.

Let $c=\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$, then check to see if there exists a value of $\lambda$ such that
Copyright

$$
\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
4 \\
0 \\
-5
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)
$$

From the " $i$ component: $4-\lambda=2$ (1)
From the $\dddot{j}$ component: $0+0 \lambda=0$ (2) ( $\checkmark$ ) Works for all $\lambda$
From the ' $k$ ' component: $-5+2 \lambda=-1$ (3)
(1) $\Longrightarrow \lambda=2 \quad$ sub into (3) $\Longrightarrow-5+(2 \times 2)=-5+4=-1 \checkmark$

Point $C$ lies on the line

Exam Papers Practice

## Equation of a Line in Parametric Form

## Howdo Ifind the vector equation of a line in parametric form?

- Byconsidering the three separate components of avectorin the $x$, yand zdirections it is possible to write the vector equation of a line as three separate equations
- Letting $\boldsymbol{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ then $\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}$ becomes
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ m \\ n\end{array}\right)$
- Where $\left(\begin{array}{c}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)$ is a position vector and $\left(\begin{array}{c}1 \\ m \\ n\end{array}\right)$ is a direction vector
- This vector equation can then be split into its three separate component forms:
- $x=x_{0}+\lambda l$
- $y=y_{0}+\lambda m$
- $z=z_{0}+\lambda n$
- These are given in the formula booklet


## Worked example

Write the parametric form of the equation of the line which passes through the point $(-2,1,0)$ with



$$
\begin{aligned}
& x=-2+3 \lambda \\
& y=1+\lambda \\
& z=-4 \lambda
\end{aligned}
$$

## Equation of a Line in Cartesian Form

- The Cartesian equation of a line can be found from the vector equation of a line by
- Finding the vector equation of the line in parametric form
- Eliminating $\lambda$ from the parametric equations
- $\lambda$ can be eliminated by making it the subject of each of the parametric equations
- For example: $X=X_{0}+\lambda I$ gives $\lambda=\frac{X-X_{0}}{1}$
- In 2D the cartesian equation of a line is a regular equation of a straight line simply given in the form
- $y=m x+c$
- $a x+b y+d=0$
- $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$ by rearranging $y-y_{1}=m\left(x-x_{1}\right)$
- In 3D the cartesian equation of a line also includes $z$ and is given in the form
- $\frac{x-x_{0}}{1}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}$
- where $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ m \\ n\end{array}\right)$
- This is given in the formula booklet
- If one of your variables does not depend on $\lambda$ then this part can be written as a separate equation
- For example: $m=0 \Rightarrow y=y_{0}$ gives $\frac{x-x_{0}}{1}=\frac{z-z_{0}}{n}, y=y_{0}$


## How dolfind the vector equation of a line given the Cartesian form?

- If you are given the Cartesian equation of a line in the form
$\frac{x-x_{0}}{1}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}$
- A vector equation of the line can be found by
- STEP 1: Set each part of the equation equal to $\lambda$ individually
- STEP 2: Rearrange each of these three equations (or two if working in 2D) to make $x, y$, and $z$ the subjects
- This will give you the three parametric equations
- $x=x_{0}+\lambda l$
- $y=y_{0}+\lambda m$
- $z=z_{0}+\lambda n$
- STEP 3: Write this in the vector form $\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ m \\ n\end{array}\right)$
- STEP 4: Set $r$ to equal $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
- If one part of the cartesian equation is given separately and is not in terms of $\lambda$ then the corresponding component in the direction vector is equal to zero


## Worked example

Aline has the vector equation $r=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)$. Find the Cartesian equation of the line.

| Cartesian equations of a <br> line | $\frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}$ |
| :--- | :--- |

Begin by writing the equation of the line in parametric form:

$$
\begin{aligned}
r_{S}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right) \Rightarrow x & =1+4 \lambda \quad \text { (1) } \\
y & =-2 \lambda \\
z & =2+\lambda
\end{aligned}
$$

Rearrange each equation to make $\lambda$ the subject:
(1) $\lambda=\frac{x-1}{4}$
(2) $\lambda=\frac{y}{-2}$
(3) $\lambda=z-2$

Set each expression for $\lambda$ equal to each other:

$$
\frac{x-1}{4}=\frac{y}{-2}=z-2
$$

### 3.10.2 Applications to Kinematics

## Kinematics using Vectors

## How are vectors related to kinematics?

- Vectors are often used in questions in the context of forces, acceleration orvelocity
- If an object is moving in one dimension then its velocity, displacement and time are related using the formula $\boldsymbol{s}=\boldsymbol{v} \boldsymbol{t}$
- where sis displacement, vis velocity and $t$ is the time taken
- If an object is moving in more than one dimension then vectors are needed to represent its velocity and displacement
- Whilst time is a scalar quantity, displacement and velocity are both vector quantities
- For an object moving at a const ant speed in a straight line its velocity, displacement and time can be related using the vector equatio n of a line
- $r=a+\lambda b$
- Letting
- rbe the positio n of the object at the time, $t$
- abe the positionvector, $r_{0}$ at the start $(t=0)$
- $\lambda$ represent the time, $t$
- bbe the velocity vector, $\boldsymbol{v}$
- Then the positio n of the object at the time, $t$ can be given by
- $r=r_{0}+t v$
- The speed of the object will be the magnitude of the velo city|v|


## - Exam Tip

Kinematics questions can have a lot of information in, read them carefully and pick out the parts that are essential to the question

- Look out forwhere variables used are the same and/ordifferent within vector equations, you will need to use different techniques to find these


## Worked example

A car, moving at constant speed, takes 2 minutes to drive in a straight line from point $A(-4,3)$ to point B $(6,-5)$.

At time $t$, in minutes, the position vector $(\boldsymbol{p})$ of the car relative to the origin can be given in the form $\boldsymbol{p}=\boldsymbol{a}+t \boldsymbol{b}$

Find the vectors $\boldsymbol{a}$ and $\boldsymbol{b}$.

Vector a represents the initial position and vector
$\underline{b}$ represents the direction vector per minute.
Position vector $\overrightarrow{O A}=\binom{-4}{3}$
At $t=0$ minutes, $\underline{f}=\underline{a}$ so $\underline{a}=\overrightarrow{O A}=\binom{-4}{3}$
Position vector $\overrightarrow{O B}=\binom{6}{-5}$
At $t=2$ minutes, the car is at the point $B$ and so $\overrightarrow{O B}=\underline{a}+2 \underline{b}$ $\binom{6}{-5}=\binom{-4}{3}+2 \underline{b}$
Direction vector $2 \underline{b}=\binom{6}{-5}-\left(-\begin{array}{c}-4 \\ 3\end{array}\right)=\binom{10}{-8}$

$$
\underline{a}=\binom{-4}{3} \quad \underline{b}=\binom{5}{-4}
$$

Copyright
© 2024 Exam Papers Practice

### 3.10.3 Pairs of Lines in 3D

## Coincident, Parallel, Intersecting \& Skew Lines

## Howdo Itell if two lines are parallel?

- Two lines are parallel if, and only if, their direction vectors are parallel
- This means the direction vectors will be scalar multiples of each other
- Forexample, the lines whose equations are $\mathbf{r}=\left(\begin{array}{c}2 \\ 1 \\ -7\end{array}\right)+\lambda_{1}\left(\begin{array}{c}2 \\ 0 \\ -8\end{array}\right)$ and
$\mathbf{r}=\left(\begin{array}{c}1 \\ -1 \\ 5\end{array}\right)+\lambda_{2}\left(\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right)$ are parallel
- This is because $\left(\begin{array}{c}2 \\ 0 \\ -8\end{array}\right)=-2\left(\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right)$


## How do ltellif two lines are coincident?

- Coincident lines are two lines that lie directly on top of each o ther
- They are indistinguishable from each other
- Two parallel lines will either never intersect ortheyare coincident (identical)
- Sometimes the vector equations of the lines maylook different
- for example, the lines represented by the equations $\mathbf{r}=\binom{1}{-8}+S\binom{-4}{8}$ and

$$
\mathbf{r}=\binom{-3}{0}+t\binom{1}{-2} \text { are coincident }
$$

- To check whether two lines are coincident:
- First check that they are parallel
- They are because $\binom{-4}{8}=-4\binom{1}{-2}$ and so their direction vectors are parallel
- Next, determine whether any point on one of the lines also lies on the other
- $\binom{1}{-8}$ is the position vector of a point on the first line and $\binom{1}{-8}=\binom{-3}{0}+4\binom{1}{-2}$ so it also lies on the second line
- If two parallellines share any point, then theyshare all points and are coincident


## What are skew lines?

- Lines that are not parallel and which do not intersect are called skew lines
- This is onlypossible in 3-dimensions

How doldetermine whether lines in 3 dimensions are parallel, skew, or intersecting?

- First, look to see if the directionvectors are parallel:
- if the direction vectors are parallel, then the lines are parallel
- if the direction vectors are not parallel, the lines are not parallel
- If the lines are parallel, check to see if the lines are coincident:
- If they share any point, then they are coincident
- If any point on one line is not on the other line, then the lines are not coincident
- If the lines are not parallel, check whether they intersect:
- STEP 1: Set the vector equations of the two lines equal to each other with different variables
- e.g. $\lambda$ and $\mu$,forthe parameters
- STEP 2: Write the three separate equations for the $\mathbf{i}, \mathbf{j}$, and $\mathbf{k}$ components in terms of $\lambda$ and $\mu$
- STEP 3: Solve two of the equations to find a value for $\lambda$ and $\mu$
- STEP 4: Checkwhether the values of $\lambda$ and $\mu$ you have fo und satisfythe third equation
- If allthree equations are satisfied, then the lines intersect
- If not all three equations are satisfied, then the lines are skew


## Howdol find the point of intersection of two lines?

- Elf a pair of lines are not parallel and do intersect, a unique point of intersection can be found
- If the two lines intersect, there will be a single point that will lie on both lines
- Follow the steps above to find the values of $\lambda$ and $\mu$ that satisfy all three equations
- STEP 5: Substitute either the value of $\lambda$ or the value of $\mu$ into one of the vector equations to find the position vector of the point where the lines intersect
- It is always a good idea to check in the other equations as well, you should get the same point foreach line


## (9) Exam Tip

- Make sure that you use different letters, e.g. $\lambda$ and $\mu$, to represent the parameters in vector equations of different lines
- Check that the variable you are using has not already been used in the question


# Exam Papers Practice 

## Worked example

Determine whether the following pair of lines are parallel, intersect, or are skew.

$$
\mathbf{r}=4 \mathbf{i}+3 \mathbf{j}+s(5 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \text { and } \boldsymbol{r}=-5 \mathbf{i}+4 \mathbf{j}+\mathbf{k}+t(2 \mathbf{i}-\mathbf{j})
$$

STEP 1: Check to see if the lines are parallel:

$$
r_{1}=\left(\begin{array}{l}
4 \\
3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
5 \\
2 \\
3
\end{array}\right) \quad r=\left(\begin{array}{c}
-5 \\
4 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)
$$

The lines are not parallel because there is no value of $k$ such that $\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right)=k\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
STEP 2: Check to see if the lines intersect:

$$
\begin{aligned}
4+5 \lambda & =-5+2 \mu & \text { (1) Set up three equations } \\
3+2 \lambda & =4-\mu & \text { (2) for each of the } i, j \text { and } \\
3 \lambda & =1 & \text { (3) } k \text { components. }
\end{aligned}
$$

$$
\text { Equation (3): } \lambda=\frac{1}{3} \text { Sub into (2): } 3+2\left(\frac{1}{3}\right)=4-\mu
$$

$$
\begin{aligned}
& \frac{11}{3}=4-\mu \\
& \mu=\frac{1}{3}
\end{aligned}
$$

Sub into (1): $4+5\left(\frac{1}{3}\right)=-5+2\left(\frac{1}{3}\right)$

$$
\frac{17}{3} \neq-\frac{13}{3} \quad \text { contradiction }
$$

There is no point of intersection.
The lines are skew

## Angle Between Two Lines

## How do we find the angle between two lines?

- The angle between two lines is equal to the angle between their direction vectors
- It can be found using the scalar product of their direction vectors
- Given two lines in the form $\boldsymbol{r}=\boldsymbol{a}_{1}+\lambda \boldsymbol{b}_{1}$ and $\boldsymbol{r}=\boldsymbol{a}_{2}+\lambda \boldsymbol{b}_{2}$ use the formula
- $\theta=\cos ^{-1}\left(\frac{\boldsymbol{b}_{1} \cdot \boldsymbol{b}_{2}}{\left|\boldsymbol{b}_{1}\right|\left|\boldsymbol{b}_{2}\right|}\right)$
- If you are given the equations of the lines in a different form or two points on a line you will need to find their direction vectors first
- To find the angle $A B C$ the vectors $B A$ and $B C$ would be used, both starting from the point $B$
- The intersection of two lines will always create two angles, an acute one and an obtuse one
- These two angles will add to $180^{\circ}$
- You may need to subtract your answer from $180^{\circ}$ to find the angle you are looking for
- A positive scalar product will result in the acute angle and a negative scalar product will result in the obtuse angle
- Using the absolute value of the scalar product will always result in the acute angle


## - Exam Tip

- In your exam read the question carefully to see if you need to find the acute or obtuse angle
- When revising, get into the practice of double checking at the end of a question whether your angle is acute or obtuse and whether this fits the question


## Worked example

Find the acute angle, in radians between the two lines defined by the equations:

$$
1_{1}: \boldsymbol{a}=\left(\begin{array}{c}
2 \\
0 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-4 \\
-3
\end{array}\right) \text { and } 1_{2}: \boldsymbol{b}=\left(\begin{array}{c}
1 \\
-4 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
-3 \\
2 \\
5
\end{array}\right)
$$

STEP 1: Find the scalar product of the direction vectors:

$$
\left(\begin{array}{l}
1 \\
-4 \\
-3
\end{array}\right) \cdot\left(\begin{array}{c}
-3 \\
2 \\
5
\end{array}\right)=(1 \times-3)+(-4 \times 2)+(-3 \times 5)=-3+(-8)+(-15)=-26
$$

negative, so the angle will
be the obtuse angle.
STEP 2: Find the magnitudes of the direction vectors:

$$
\sqrt{(1)^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{26} \quad \sqrt{(-3)^{2}+(2)^{2}+(5)^{2}}=\sqrt{38}
$$

STEP 3: Find the angle: $\cos \theta=\frac{|-26|}{\sqrt{26} \sqrt{38}} \quad \begin{aligned} & \text { Using the absolute } \\ & \text { value will result }\end{aligned}$ in the acute angle

$$
\theta=\cos ^{-1}\left(\frac{26}{\sqrt{26} \sqrt{38}}\right)
$$

$\theta=0.597$ radians (3sf)

Exam Papers Practice

### 3.10.4 The Vector Product

## The Vector ('Cross') Product

## What is the vector (cross) product?

- The vector product (also known as the cross product) is a form in which two vectors can be combined together
- The vectorproduct between two vectors $\boldsymbol{v}$ and $\boldsymbol{w}$ is denoted $\boldsymbol{v} \times \boldsymbol{w}$
- The result of taking the vector product of two vectors is a vector
- The vector product is a vector in a plane that is perpendicular to the two vectors from which it was calculated
- This could be in either direction, depending on the angle between the two vectors
- The right -hand rule helps you see which direction the vector product goes in
- Bypointing your indexfinger and your middle fingerin the direction of the two vectors your thumb will automatic allygo in the direction of the vector product

NORMAL VECTOR


## How do Ifind the vector (cross) product?

- There are two methods forcalculating the vectorproduct
- The vector product of the two vectors vand wcan be written in component form as follows:
$\boldsymbol{v} \times \boldsymbol{W}=\left(\begin{array}{c}\boldsymbol{v}_{2} \boldsymbol{W}_{3}-\boldsymbol{V}_{3} \boldsymbol{W}_{2} \\ \boldsymbol{v}_{3} \boldsymbol{W}_{1}-\boldsymbol{V}_{1} \boldsymbol{W}_{3} \\ \boldsymbol{V}_{1} \boldsymbol{W}_{2}-\boldsymbol{V}_{2} \boldsymbol{W}_{1}\end{array}\right)$
- Where $\boldsymbol{v}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ V_{3}\end{array}\right)$ and $\boldsymbol{w}=\left(\begin{array}{c}W_{1} \\ W_{2} \\ W_{3}\end{array}\right)$
- This is given in the formula booklet
- The vector product can also be found in terms of its magnitude and direction
- The magnitude of the vector product is equal to the product of the magnitudes of the two vectors and the sine of the angle between them
- $|\boldsymbol{V} \times \boldsymbol{w}|=|V||W| \sin \theta$
- Where $\theta$ is the angle between $\boldsymbol{v}$ and $\boldsymbol{w}$
- The two vectors vand ware joined at the start and pointing away fromeach other
- This is given in the formula booklet
- The direction of the vectorproduct is perpendicular to both vand w


## What properties of the vector product do Ineed to know?

- The order of the vectors is important and changes the result of the vectorproduct
- $\boldsymbol{V} \times \boldsymbol{W} \neq \boldsymbol{W} \times \boldsymbol{V}$
- However
- $\boldsymbol{V} \times \boldsymbol{W}=-\boldsymbol{W} \times \boldsymbol{V}$
- The distributive law can be used to 'expand brackets'
- $\boldsymbol{u} \times(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{u} \times \boldsymbol{v}+\boldsymbol{u} \times \boldsymbol{w}$
- Where $\boldsymbol{u}, \boldsymbol{v}$ and $\boldsymbol{w}$ are allvectors
- Multiplying a scalar by a vector gives the result:
- $(\boldsymbol{k} \boldsymbol{v}) \times \boldsymbol{w}=\boldsymbol{v} \times(k \boldsymbol{w})=k(\boldsymbol{v} \times \boldsymbol{w})$
- The vectorproduct between a vector and itself is equal to zero
- $\boldsymbol{V} \times \boldsymbol{V}=0$
- If two vectors are parallel then the vector product is zero
- This is because $\sin 0^{\circ}=\sin 180^{\circ}=0$
- If $\boldsymbol{V} \times \boldsymbol{W}=0$ then $\boldsymbol{v}$ and $\boldsymbol{w}$ are parallel if they are non-zero
- If two vectors, $\boldsymbol{v}$ and $\boldsymbol{w}$, are perpendicular then the magnitude of the vector pro duct is equal to the product of the magnitudes of the vectors
- $|\boldsymbol{V} \times \boldsymbol{W}|=|\boldsymbol{W}||\boldsymbol{V}|$
- This is because $\sin 90^{\circ}=1$


## (-) Exam Tip

- The formulae for the vector product are given in the formula booklet, make sure you use them as this is an easy formula to get wrong
- The properties of the vector product are not given in the formula booklet, howeverthey are important and it is likely that you will need to recall them in your exam so be sure to commit them to memory


## Worked example

Calculate the magnitude of the vector product between the two vectors $\boldsymbol{V}=\left(\begin{array}{c}2 \\ 0 \\ -5\end{array}\right)$ and
$\boldsymbol{W}=3 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ using
i)

$$
\begin{aligned}
& \text { the formula } \boldsymbol{v} \times \boldsymbol{w}=\left(\begin{array}{c}
\boldsymbol{v}_{2} \boldsymbol{w}_{3}-\boldsymbol{v}_{3} \boldsymbol{w}_{2} \\
\boldsymbol{v}_{3} \boldsymbol{w}_{1}-\boldsymbol{v}_{1} \boldsymbol{w}_{3} \\
\boldsymbol{v}_{1} \boldsymbol{w}_{2}-\boldsymbol{v}_{2} \boldsymbol{w}_{1}
\end{array}\right), \\
& \underline{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
-5
\end{array}\right) \quad \underline{w}=\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right) \\
& \text { Use the formula to find the cross -product: } \\
& \underline{v} \times \underline{w}=\left(\begin{array}{l}
v_{2} w_{3}-v_{3} w_{2} \\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right)=\left(\begin{array}{c}
(0)(-1)-(-5)(-2) \\
(-5)(3)-(2)(-1) \\
(2)(-2)-(0)(3)
\end{array}\right)=\left(\begin{array}{l}
-10 \\
-13 \\
-4
\end{array}\right) \\
& \text { Find the magnitude of } \underline{v} \times \underline{w}: \\
& |\underline{v} \times \underline{w}|=\sqrt{(-10)^{2}+(-13)^{2}+(-4)^{2}}=\sqrt{285} \\
& |\underline{v} \times \underline{w}|=16.9(3 s f)
\end{aligned}
$$

ii) the formula, given that the angle between them is 1 radian.

Find the magnitude of $\underline{v}$ and $\underline{w}$ :

$$
|\underline{v}|=\sqrt{2^{2}+0^{2}+(-5)^{2}}=\sqrt{29}
$$

$$
|\underline{w}|=\sqrt{3^{2}+(-2)^{2}+(-1)^{2}}=\sqrt{14}
$$

$$
\begin{aligned}
|\underline{v} \times \underline{w}| & =|\underline{v}||\underline{w}| \sin \theta \\
& =\sqrt{29} \times \sqrt{14} \sin \left(1^{c}\right)
\end{aligned}
$$

$$
|\underline{x} \times \underline{w}|=\mid 7.0(3 s f)
$$

## Areas using Vector Product

## How do luse the vector product to find the area of a parallelogram?

- The area of the parallelogram with two adjacent sides formed by the vectors $\boldsymbol{v}$ and $\boldsymbol{w}$ is equal to the magnitude of the vector product of two vectors $\boldsymbol{v}$ and $\boldsymbol{w}$
- $A=|\boldsymbol{V} \times \boldsymbol{W}|$ where $\boldsymbol{v}$ and $\boldsymbol{w}$ form two adjacent sides of the parallelo gram
- This is given in the formula booklet


## How do luse the vector product to find the area of a triangle?

- The area of the triangle with two sides formed bythe vectors $\boldsymbol{v}$ and $\boldsymbol{w}$ is equal to half of the magnitude of the vector product of two vectors $\boldsymbol{v}$ and $\boldsymbol{w}$
- $A=\frac{1}{2}|\boldsymbol{V} \times \boldsymbol{W}|$ where $\boldsymbol{v}$ and $\boldsymbol{w}$ form two sides of the triangle
- This is not given in the formula booklet


## - Exam Tip

- The formula for the area of the parallelogram is given in the formula bo oklet but the formula for the are of a triangle is not
- Remember that the area of a triangle is half the area of a parallelo gram
© 2024 Exam Papers Practice

Exam Papers Practice

## Worked example

Find the area of the triangle enclosed by the coordinates $(1,0,5),(3,-1,2)$ and $(2,0,-1)$.

Let $A$ be $(1,0,5), B$ be $(3,-1,2)$ and $C$ be $(2,0,-1)$


You can use any two direction vectors moving away from any vertex.

Find the two direction vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$

$$
\overrightarrow{A B}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
5
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
-3
\end{array}\right) \quad \overrightarrow{A C}=\left(\begin{array}{l}
2 \\
0 \\
-1
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
5
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
-6
\end{array}\right)
$$

Find the cross product of the two direction vectors:

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left(\begin{array}{c}
2 \\
-1 \\
-3
\end{array}\right) \times\left(\begin{array}{c}
1 \\
0 \\
-6
\end{array}\right)=\left(\begin{array}{l}
(-1)(-6)-(-3)(0) \\
(-3)(1)-(2)(-6) \\
(2)(0)-(-1)(1)
\end{array}\right)=\left(\begin{array}{l}
6 \\
9 \\
1
\end{array}\right)
$$

Find the magnitude of the cross product
$|\overrightarrow{A B} \times \overrightarrow{A C}|=\sqrt{6^{2}+9^{2}+1^{2}}=\sqrt{118}$
Area of the triangle is half the magnitude
Area $=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2} \sqrt{18}$

$$
\text { Area }=5.43 u^{2}(3 s f)
$$

### 3.10.5 Shortest Distances with Lines

## Shortest Distance Between a Point and a Line

## Howdo Ifind the shortest distance from a point to a line?

- The shortest distance from any point to a line will always be the perpendicular distance
- Given a line / with equation $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ and a point Pnot on/
- The scalar product of the direction vector, $\mathbf{b}$, and the vector in the direction of the shortest dist ance will be zero
- The shortest distance can be found using the following steps:
- STEP 1: Let the vector equation of the line be rand the point not on the line be $P$, then the point on the line closest to $P$ will be the point $F$
- The point $F$ is sometimes called the fo ot of the perpendicular
- STEP 2: Sketch a diagram showing the line /and the points $P$ and $F$
- The vector $\overrightarrow{F P}$ will be perpendicular to the line $/$
- STEP 3: Use the equation of the line to find the po sition vector of the point $F$ in terms of $\lambda$
- STEP 4: Use this to find the dis placement vector $\overrightarrow{F P}$ in terms of $\lambda$
- STEP 5:The scalarproduct of the direction vector of the line /and the displacement vector $\overrightarrow{F P}_{\text {will be zero }}$
- Form an equation $\overrightarrow{F P} \cdot \mathbf{b}=0$ and solve to find $\lambda$
- STEP 6: Substitute $\lambda$ into $\overrightarrow{F P}$ and find the magnitude $|\overrightarrow{F P}|$
- The shortest distance from the point to the line will be the magnitude of $\overrightarrow{F P}$
- Note that the shortest distance between the point and the line is sometimes referred to as the length of the perpendicular


Howdo we use the vector product to find the shortest distance from a point to a line?

- The vector product can be used to find the shortest distance from any point to a line on 2dimensional plane
- Given a point, $P$, and a line $r=a+\lambda b$
- The shortest distance from $P$ to the line will be $\frac{|\overrightarrow{A P} \times b|}{|b|}$
- Where $A$ is a point on the line
- This is not given in the formula booklet


## (9) Exam Tip

- Column vectors can be easier and clearer to work with when dealing with scalar products.

Exam Papers Practice

## Worked example

Point $A$ has coordinates $(1,2,0)$ and the line $l$ has equation $\mathbf{r}=\left(\begin{array}{l}2 \\ 0 \\ 6\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$.
Point $B$ lies on the 1 such that $[A B]$ is perpendicular to $l$.
Find the shortest distance from $A$ to the line 1 .
$B$ is on $\lambda$ so can be written in terms of $\lambda$ :

$$
\overrightarrow{O B}=\left(\begin{array}{l}
2 \\
0 \\
6
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
2 \\
\lambda \\
6+2 \lambda
\end{array}\right) \quad \times A(1,2,0)
$$

Find $\overrightarrow{A B}$ using $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$

$$
\overrightarrow{A B}=\left(\begin{array}{c}
2 \\
\lambda \\
6+2 \lambda
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
\lambda-2 \\
6+2 \lambda
\end{array}\right)
$$

$\overrightarrow{A B}$ is perpendicular to $l: \overrightarrow{A B} \cdot\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)=0$

$$
\begin{aligned}
\left(\begin{array}{c}
\lambda \\
6+2 \\
6+2 \lambda
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) & =0 \\
\lambda-2+2(6+2 \lambda) & =0
\end{aligned}
$$

Exam

$$
\text { D) } 5 \lambda+10=0
$$

Substitute back into $\overrightarrow{A B}$ and find the magnitude:

$$
\begin{gathered}
\overrightarrow{A B}=\left(\begin{array}{c}
1 \\
-2-2 \\
6+2(-2)
\end{array}\right)=\left(\begin{array}{c}
1 \\
-4 \\
2
\end{array}\right) \\
|\overrightarrow{A B}|=\sqrt{1^{2}+(-4)^{2}+2^{2}}=\sqrt{21}
\end{gathered}
$$

$$
\text { Shortest distance }=\sqrt{21} \text { units }
$$

## Shortest Distance Between Two Lines

## How do we find the shortest distance between two parallel lines?

- Two parallellines will never intersect
- The shortest distance between two parallellines will be the perpendicular distance between them
- Given a line $l_{1}$ with equation $\mathbf{r}=\mathbf{a}_{1}+\lambda \mathbf{d}_{1}$ and a line $I_{2}$ with equation $\mathbf{r}=\mathbf{a}_{2}+\mu \mathbf{d}_{2}$ then the shortest distance between them can be found using the following steps:
- STEP 1: Find the vector between $\mathbf{a}_{1}$ and a general coordinate from $I_{2}$ in terms of $\mu$
- STEP 2: Set the scalar product of the vectorfound in STEP 1 and the direction vector $\mathbf{d}_{1}$ equal to zero
- Rememberthe direction vectors $\mathbf{d}_{1}$ and $\mathbf{d}_{2}$ are scalar multiples of each o ther and so either can be used here
- STEP 3: Form and solve an equation to find the value of $\mu$
- STEP 4: Substitute the value of $\mu$ back into the equation for $l_{2}$ to find the coordinate on $l_{2}$ closest to $l_{1}$
- STEP 5: Find the distance between $\mathbf{a}_{1}$ and the coordinate found in STEP 4
- Alternatively, the formula $\frac{|\overrightarrow{A B} \times \mathbf{d}|}{|\mathrm{d}|}$ can be used
- Where $\overrightarrow{A B}$ is the vector connecting the two given coordinates $\mathbf{a}_{1}$ and $\mathbf{a}_{2}$
- $\mathbf{d}$ is the simplified vector in the direction of $\mathbf{d}_{1}$ and $\mathbf{d}_{2}$
- This is not given in the formula booklet


## How do we find the shortest distance from a given point on a line to another line?

- The shortest distance from any point on a line to ano therline will be the perpendicular distance from the point to the line
- If the angle between the two lines is knownorcan be found then right-angled trigo no metrycan be used to find the perpendicular distance
- The formula $\frac{|\overrightarrow{A B} \times \mathbf{d}|}{|\mathbf{d}|}$ given above is derived using this method and can be used
- Alternatively, the equatio n of the line can be used to find a general co ordinate and the steps above can be followed to find the shortest distance


## How do we find the shortest distance between two skewlines?

- Two skew lines are not parallel but will neverintersect
- The shortest distance between two skew lines will be perpendicular to both of the lines
- This will be at the point where the two lines pass each otherwith the perpendicular distance where the point of intersection would be
- The vector product of the two direction vectors can be used to find a vector in the direction of the shortest distance
- The shortest distance will be a vector parallel to the vector product
- To find the shortest distance between two skew lines with equations $\mathbf{r}=\mathbf{a}_{1}+\lambda \mathbf{d}_{1}$ and $\mathbf{r}=\mathbf{a}_{2}+\mu \mathbf{d}_{2}$,
- STEP 1: Find the vector product of the direction vectors $\mathbf{d}_{1}$ and $\mathbf{d}_{2}$
- $\mathbf{d}=\mathbf{d}_{1} \times \mathbf{d}_{2}$
- STEP 2: Find the vector in the direction of the line between the two general points on $l_{1}$ and $l_{2}$ in terms of $\lambda$ and $\mu$
- $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$
- STEP 3: Set the two vectors parallel to each other
- $\mathbf{d}=k \overrightarrow{A B}$
- STEP 4: Set up and solve a system of linear equations in the three unknowns, $k, \lambda$ and $\mu$



## - Exam Tip

- Exam questions will often ask for the shortest, orminimum, distance within vector questions
- If you're unsure start by sketching a quick diagram
- Sometimes calculus can be used, however usuallyvectormetho ds are required


## Worked example

Considerthe skew lines $I_{1}$ and $I_{2}$ as defined by:

$$
I_{1}: \boldsymbol{r}=\left(\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right)
$$

$$
I_{2}: \boldsymbol{r}=\left(\begin{array}{c}
-5 \\
4 \\
-8
\end{array}\right)+\mu\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)
$$

Find the minimum distance between the two lines.

Find the vector product of the direction vectors.

$$
\left(\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right) \times\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
(-3)(1)-(4)(2) \\
(4)(-1)-(2)(1) \\
(2)(2)-(-3)(-1)
\end{array}\right)=\left(\begin{array}{c}
-11 \\
-6 \\
1
\end{array}\right)
$$

Find the vector in the direction of the line between the general coordinates.

$$
\overrightarrow{A B}=\left(\begin{array}{c}
-5-\mu \\
4+2 \mu \\
-8+\mu
\end{array}\right)-\left(\begin{array}{c}
6+2 \lambda \\
-4-3 \lambda \\
3+4 \lambda
\end{array}\right)=\left(\begin{array}{c}
-11-\mu-2 \lambda \\
8+2 \mu+3 \lambda \\
-11+\mu-4 \lambda
\end{array}\right)
$$

A point on $l_{2}$ A point on $l_{1}$


$$
\left(\begin{array}{c}
-11-\mu-2 \lambda \\
8+2 \mu+3 \lambda \\
-11 t+\mu+-4 \lambda
\end{array}\right)=k\left(\begin{array}{c}
-11 \\
-6 \\
1
\end{array}\right) \quad \begin{array}{r}
\overrightarrow{A B} \text { is parallel to }\left(\begin{array}{c}
-11 \\
-6 \\
1
\end{array}\right) \\
\text { so } \overrightarrow{A B}=k\left(\begin{array}{c}
-11 \\
-6 \\
1
\end{array}\right)
\end{array}
$$

Set up and solve a system of equations.

$$
\left.\begin{array}{l}
11 k-2 \lambda-\mu=11 \\
6 k+3 \lambda+2 \mu=-8 \\
\mu-4 \lambda-k=11
\end{array}\right\} \begin{aligned}
& \text { Solve using } G D C: \\
& k=\frac{31}{79} \quad \lambda=-\frac{238}{79} \quad \mu=-\frac{52}{79}
\end{aligned}
$$

Substitute back into the expression for $\overrightarrow{A B}$ and find the magnitude:
$|\overrightarrow{A B}|=\left|\left(\begin{array}{l}-11-\left(-\frac{52}{79}\right)-2\left(-\frac{238}{79}\right) \\ 8+2\left(-\frac{52}{79}\right)+3\left(-\frac{238}{79}\right) \\ -11+\left(-\frac{52}{79}\right)-4\left(-\frac{238}{79}\right)\end{array}\right)\right|=\left|\left(\begin{array}{l}-\frac{341}{79} \\ -\frac{186}{79} \\ \frac{31}{79}\end{array}\right)\right|=\sqrt{\left(-\frac{341}{79}\right)^{2}+\left(-\frac{186}{79}\right)^{2}+\left(\frac{31}{79}\right)^{2}}$
Shortest distance $=4.93$ units ( 3 s.f.)

