铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.10 Graph Theory

3.10.1 Introduction to Graph Theory

Parts of a Graph

A graph is a mathematical structure that is used to represent objects and the connections between them. They can be used in mo delling manyreal-life applications, e.g. electric al circuits, flight paths, maps etc.

What are the different parts of a graph?

- A vertex (point) represents an object or a place
- Adjacent vertices are connected by an edge
- The degree of a vertexcan be defined by how manyedges are connected to it
- An edge (line) forms a connectionbetween two vertices
- Adjacent edges share a commonvertex
- An edge that starts and ends at the same vertexis called a loop
- There maybe multiple edges connecting two vertices

Types of Graphs

What are the types of graphs?

- A complete graph is a graph in which each vertex is connected by an ed ge to each of the other vertices
- The edges in a weighted graph are assigned numeric al values such as distance ormoney
- The edges in a directed graph can only be travelled along in the directionindicated
- the in-degree of a vertex is the number of edges that lead to that vertex
- the out-degree is the number of edges that leave from that vertex
- A simple graph is undirected and unweighted and contains no loops or multiple edges
- Given a graph G, a subgraph will onlycontain edges and vertices that appear in G
- In a connected graph it is possible to move along the edges and vertices to find a route between any two vertices
- If the graph is strongly connected, this route can be in either direction between the two vertices
- A tree is a graph in which anytwo vertices are connected by exactlyone path
- A spanning tree is a subgraph, which is also a tree, of a graph G that contains all the vertices from G

© Exam Tip

- There are a lot of specific terms involved in graph theory and you are often asked to describe them in an exam - make sure you learn the definitio ns
- Make sure that any graphs you draw are big and clearso they are easyforthe examinerto read

Worked example

The graph G shown below is a strongly connected, unweighted, directed graph with 5 vertices.

a) State the in-degree of vertex A.

Only the edge connecting A and C is going into A

$$
\text { In-degree of vertex } A=
$$

b) Explain why the graph is considered to be strongly connected.

The graph is strongly connected because it is possible to construct a walk in either direction between any two vertices

3.10.2 Walks \& Adjacency Matrices

Walks \& Adjacency Matrices

Adjacency matrices are ano therway to represent graphs and connections between the different vertices.

What is an adjacency matrix?

- An adjacencymatrix is a square matrix where all of the vertices in the graph are listed as the headings for both the rows (i) and columns (\boldsymbol{j})
- An adjacencymatrix can be used to show the number of direct connections between two vertices
- An entry of 0 in the matrix means that there is no direct connection between that pair of vertices
- In a simple graph the only entries are either O orl
- Aloop is indicated in an adjacency matrix with a value in the leading diago nal (the line from to pleft to bottom right)
- In an undirected matrix the value in the leading diago nal will be $\mathbf{2}$ because you can use the loop to travel out of and into the vertex in two different directions
- In a directed matrix, if the loop has been given a direction, the value in the leading diagonal will be 1 as you can only travel along the loop out of and back into the vertex in one direction
- For a graph with no loops every entry in the leading diago nal will be $\mathbf{0}$
- An undirected graph will be symmetrical in the leading diago nal
- The sum of the entries in a row is the in degree of that vertex
- The sum of the entries in a column is the out degree of that vertex

Exam Papers Practice
Let G be the graph below.

$$
\begin{aligned}
& A \\
& B \\
& C \\
& D \\
& E
\end{aligned}\left(\begin{array}{lllll}
A & B & C & D & E \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 1 & 2
\end{array}\right)
$$

Number of Walks

What is a walk?

- A walk is a sequence of vertices that are visited when moving through a graph along its edges
- Both edges and vertices can be revisited in a walk
- The length of a walk is the tot al number of edges that are traversed in the walk

How do you find the number of walks in a graph?

- Let $\boldsymbol{M d}$ denote the adjacency matrix of a graph. The (i, j) entry in the matrix \boldsymbol{M}^{k} will give the number of walks of length k from vertex ito vertex j
- If there is an entry of $\mathbf{2}$ in the leading diagonal of the matrix, this should be changed to albefore the matrix is raised to a power
- The number of walks, between vertex iand vertexj, of length n or less can be given by the matrix \boldsymbol{S}^{n}, where $\boldsymbol{S}^{n}=\boldsymbol{M}^{1}+\boldsymbol{M}^{2}+\ldots+\ldots \boldsymbol{M}^{n}$
- If all of the entries in a single row of \boldsymbol{S}^{n} are non-zero values then the graph is connected

(․) Exam Tip

- Read the question carefully to determine if you need to choose a specific powerforthe adjacency matrix or if you need to play around with different powers!

Exam Papers Practice

Worked example

The adjacency matrix Mof a graph G is given by

b) Find the number of walks of length 4 from vertexB to Vertex E.

Exam Papers Practice

Enter the matrix into your $G D C$ and raise it to the power 4

$$
M^{4}=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)^{4}
$$

c) Find the number of walks of 3 or less from vertex A to vertex C.

Enter the matrix into your GDC and add successive powers of it
Copyright
© 2024 Exam Papa

$$
S^{3}=\overline{=}+M^{2}+M^{3}
$$

$$
S^{3}=\left(\begin{array}{lllll}
3 & 7 & 7 & 3 & 7 \\
7 & 2 & 2 & 7 & 2 \\
7 & 2 & 2 & 7 & 2 \\
3 & 7 & 7 & 3 & 7 \\
7 & 2 & 2 & 7 & 2
\end{array}\right) \text { column } C
$$

The number of walks of length 3 or less from vertex A to vertex C is 7

Weighted Adjacency Tables

A weighted adjacency table gives more detailed information about the connection between different vertices in a weighted graph.

What is a weighted adjacencytable?

- A weighted adjacencytable is different to an adjacencymatrix as the value in each cell is the weight of the ed ge connecting that pair of vertices
- Weight could be cost, distance, time etc.
- An empty cell can be used to indicate that there is no connection between a pair of vertices
- A directed graph is not symmetrical along the leading diagonal (the line from topleft to bottom right)
- When drawing a graph from its adjacencytable be careful when labelling the edges
- For an un-directed graph the two cells between a specific pair of vertices will be the same so connect the vertices with one edge labelled with the relevant weight
- For a directed graph if the two cells between a specific pair of vertices have different values draw two lines between the vertices and label each with the correct weight and direction
- A weighted adjacencytable can be used to work out the weight of different walks in the graph

Worked example

The table below shows the time taken in minutes to travel bycar between 4 different to wns.

	A	B	C	D
A		16	35	
B	16		20	18
C	35	20		34
D		23	34	

a) t Draw the graph described by the adjacency table.

b) State the time taken to drive from To wn B to Town D.

```
1 8 \text { minutes}
```

Page 7 of 31

3.10.3 Minimum Spanning Trees

Kruskal's Algorithm

In a situation that can be modelled by a graph, Kruskal's algorithm is a mathematic al tool that can be used to reduce costs, materials ortime.

Why do we use Kruskal's Algorit hm?

- Kruskal's algorithm is a series of steps that when followed will produce the minimum spanning tree for a connected graph
- Finding the minimum spanning tree is us eful in a lot of practical applications to connect all of the vertices in the most efficient waypossible
- The number of edges in a minimum spanning tree will always be one less than the number of vertices in the graph
- A cycle is a walk that starts at a given vertex and ends at the same vertex.
- A minimum spanning tree cannot contain any cycles.

What is Kruskal's Algorithm?

- STEP 1

Sort the edges in terms of increasing weight

- STEP 2

Select the edge of least weight (if there is more than one edge of the same weight, either maybe used)

- STEP 3

Select the next edge of least weight that has not alreadybeen chosen and add it to your tree provided that it does not make a cycle with any of the previously selected edges

- STEP 4

Repeat STEP 3 until all of the vertices in the graph are connected

(-) Exam Tip

- When using any of the algorithms for finding the minimum spanning tree, make sure that you state the order in which the edges are selected to get full marks for working!

Exam Papers Practice

Worked example

Consider the weighted graph G below.

a) Use Kruskal's algorithm to find the minimum spanning tree. Show each step of the algo rithm clearly.

Exam Papers Practice
© 2024 Exam Papers Practice

b) State the total weight of the minimum spanning tree.

Add up the weights of the edges in the minimum spanning tree

$$
1+2+4+5+5+6+7=30
$$

Prim's Algorithm

Prim's algorithm is a second method of find ing the minimum spanning tree of a graph.

What is Prim's Algorithm?

- Prim's algorithm involves adding edges from vertices that are already connected to the tree.
- Cycles are avoided by only adding edges that are not alreadyconnected at one end.
- STEP 1

Start at anyvertex and choose the edge of least weight that is connected to it

- STEP 2

Choose the edge of least weight that is incident (connected) to any of the vertices already connected and does not connect to anothervertex that is already in the tree

- STEP 3

Repeat STEP 2 until all of the vertices are added to the tree

Worked example

Consider the weighted graph below.

a) Using Prim's algo rithm, find the minimum spanning tree.

Exam Papers Practice

Select a starting vertex (A) and choose the edge of least weight that is connected to it

$$
A \quad B \quad A B \text { (15) }
$$

Continued to select the edge of least weight that is connected to any of the other vertices that are already connected in the tree

$A B$ (15)
$B C$ (13)

Repeat this process until all vertices are connected, remembering to record the order in which the edges were added

- M ® !

Copyright
© 2024 Exam Papers Practice
b) State the to ta weight of the minimum s panning tree.

Add up the weights of the edges in the minimum spanning tree

$$
15+13+12+17=57
$$

Prim's Algorithm Using a Matrix

Information may be given to you either in the form of a graph or as a weighted adjacency table. Prim's algorithm can be adapted to be used from the adjacency matrix.

How do you apply Prim's algorithm to a matrix?

- A minimum spanning tree is built up from the least weight ed ges that are incident to vertices already in the tree by looking at the relevant rows in the adjacency table
- STEP 1

Select anyvertex to start from, cross out the values in the column asso ciated with that vertex and label the row associated with the vertex 1

- STEP 2

Circle the lowest value in any cell along that row and add the ed ge to your tree, cross out the remaining values in the column of the cell that you have circled

- STEP 3

Label the row associated with the same vertex as the column in the previous STEP with the next number

- STEP 4

Circle the lowest value in any cell along any of the rows that have been labelled and add the edge to your tree, cross out the remaining values in the column of the cell that you have circled

- STEP 5

Repeat STEPS 3 and 4 until all rows have been labelled and all vertices have been ad ded to the tree

Which should Iuse Prim's or Kruskal's Algorithm?

- Kruskal's algorithm can be used when the information is in graph form whereas Prim's algorithm can be used in either graph ormatrix form.
- Prim's algorithm is sometimes considered to be more efficient that Kruskal's algorithm as
- the edges do not need to be ordered at the start and
- it does not rely on checking for cycles at each step
- An exam question will usually specify which method should be used, o therwise you have the choice
- If you are asked to find the minimumspanning tree and the information given in the question is in the form of a table, you should use Prim's algo rithm

© Exam Tip

- Look out forquestions that ask youto minimise the cost orlengthetc. fromaweighted graph - they are implying that they want you to find the minimum spanning tree!

Worked example

Celeste is building a model city incorporating 6 main buildings that need to be connected to an electrical supply.

Each vertex listed in the table below represents a building and the weighting of each edge is the cost in USD of creating a link to the electrical supply between the given vertices.

	A	B	C	D	E	F
A	-	4	9	8	11	3
B	4	-	13	2	5	12
C	9	13	-	7	1	4
D	8	2	7	-	10	3
E	11	5	1	10	-	15
F	3	12	4	3	15	-

Celeste wants to find the lowest cost solution that links all 6 buildings up to the electrical supply.
a) Starting from vertexA, use Prim's algo rithm on the table to find and draw the minimum spanning tree. Show each step of the process clearly.

Start at any vertex and label it 1, cross out the values in colum A and select the edge of least weight in row A

(1) | | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | - | 4 | 9 | 8 | 11 | 3 |
| B | 4 | - | 13 | 2 | 5 | 12 |
| C | 9 | 13 | - | 7 | 1 | 4 |
| D | 8 | 2 | 7 | - | 10 | 3 |
| E | 11 | 5 | 1 | 10 | - | 15 |
| F | 3 | 12 | 4 | 3 | 15 | - |

AF (3)

Label row F 2, delete the remaining values in column F and select the edge of least weight from rows A and F
(1)

	A	B	C	D	E	F
\mathbf{A}	-	4	9	8	11	$(3$
\mathbf{B}	4	-	13	2	5	12
\mathbf{C}	9	13	-	7	1	4
\mathbf{D}	8	2	7	-	10	3
E	11	5	1	10	-	15
\mathbf{F}	3	12	4	3	15	-

AF (3) DF (3)

Continue in this way until all vertices are selected, remembering to record the order in which the edges are added

| | | \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{E} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\mathbf{F} \mathbf{F}$.

b) State the lowest cost of connecting all of the buildings to the electricity supply.

> Add up the weights of the edges in the minimum
spanning tree

```
    3+3+2+4+1=13
```


3.10.4 Chinese Postman Problem

Eulerian Trails \& Circuits

What are Eulerian trails and circuits?

- A trail is a walk in which no edge is repeated
- An Eulerian trailis a trail that visits each edge in a graph exactly once
- A circuit is a trail that begins and ends at the same vertex
- An Eulerian circuit is a trail that visits each edge in a graph exactly once and begins and ends at the same vertex
- A graph which contains an Eulerian circuit is called an Eulerian graph
- In an Eulerian graph the degree of each vertex is even
- A semi-Eulerian graph contains an Eulerian trail but not an Eulerian circuit
- In a semi-Eulerian graph exactly one pair of vertices have an odd degree
- These are the start and finish points of any Euleriant rail
- An adjacency matrix can be used to determine if a graph is Eulerian or semi-Eulerian as the degree of each vertex can be found byinspecting the sum of the entries in the rows (outdegree) orcolumns (in-degree)

(-) Exam Tip

- If you can draw a graph without taking your pen off the paper and witho ut going over any edge more than once then you have an Eulerian orsemi-Eulerian graph!

Worked example

Let G be the graph shown below.

a) Show that Gis a semi-Eulerian graph. Look at the degree of each vertex
$A: 2$
B: 4
C: 3
D: 3
$E=4$

```
G is a semi-Eulerian graph because it has
    exactly one pair of odd vertices C and D
```

b) Write down an Eulerian trail for G.

There are several possible Eulerian trails one solution is: $D E A B E C B C$

Chinese Postman Problem

The Chinese postman problem requires you to find the route of least weight that starts and finishes at the same vertex and traverses every edge in the graph. Some edges may need to be traversed twice and the challenge is to minimise the total weight of these repeated edges.

Howdolsolve the Chinese postman problem?

- If all of the vertices in a graph are even then the shortest route will be the sum of the weights of the edges in an Eulerian circuit
- If there is one pair of odd vertices in the graph then the shortest route between them will need to be found and repeated before finding an Eulerian circuit
- There will always be an even number of odd vertices as the total sum of the degrees of the vertices is double the number of edges
- If there are more than two odd vertices, then each possible pairing of the odd vertices must be considered in orderto find the minimum weight of the edges that need to be repeated
- The maximum number of odd vertices that could appear in an exam question is 4

What are the steps of the Chinese postman algorithm?

- STEP 1

Inspect the degree of all of the vertices and identify anyodd vertices

- STEP 2

Find the possible pairings between the odd vertices

- STEP 3

For each possible combination of vertices, find the shortest walk between the vertices and add the edges to be repeated to the graph

- STEP 4

Write down an Eulerian circuit of the adjusted graph to find a possible route and find the sum of the edges traversed to find the total weight

What variations maythere be on the Chinese postman algorithm?

- The weighting of the edge between a pair of vertices may be different depending on if it is the first time it is being traversed or a repeat.
- For example, if an inspectorwas checking a pipeline for defects then the first time going along a section of pipeline could take longer during inspection than if it is being repeated in order to get from one vertex to ano ther
- If there are 4 odd vertices you maybe asked to start and finish at different vertices. Find the length of the routes for all possible pairings of the odd vertices and choose the shortest route between any 2 of them to be repeated. The other two odd vertices will be your start and finish points.

© Exam Tip

- Look carefullyforthe shortest route between two vertices exam questions often have graphs where a combination of edges will turn out to be a shorter distance than a more direct route

(Worked example

The graph G shown below dis plays the distances, in kilometres, of the main roads between to wns A, B, C, D and E. Eachroad is to be inspected forpotholes.

a) Explain why G does not contain an Eulerian circuit.

The graph G does not contain an Eulerian circuit as some of the vertices are odd
b) Find the shortest ro ute that starts and finishes at to wn A and allows foreach ro ad to be inspected.

Exam Papers Practice

There are 4 odd vertices so all of the possible pairings must be considered to find the shortest distance that needs to be repeated

Possible pairings:

$$
\begin{aligned}
& A B+C D=12+10=22 \\
& A C+B D=A D C B D \\
& A D+4=22 \\
& A D+B C=A D+B C
\end{aligned}
$$

Add the edges to be repeated onto the graph and find an Eulerian circuit starting from A

$A D A B D C B C A$

$-\quad$
c) State the total length of the shortest route.

Add the length of each edge in the graph then add the weight of the repeated edges

$$
\underbrace{\begin{array}{c}
\text { Repeated edges } \\
15+17+8+4+9+10+6
\end{array}+17}_{\text {Edges in the original graph }}=86 \mathrm{~km}
$$

3.10. 5 Travelling Salesman Problem

Hamiltonian Paths \& Cycles

What are Hamiltonian paths and cycles?

- A path is a walk in which no vertices are repeated
- A Hamilt onian path is a path in which each vertex in a graph is visited exactly once
- A cycle is a walk that starts and ends at the same vertex and repeats no other vertices
- A Hamiltonian cycle is a cycle which visits each vertex in a graph exactly once
- If a graph contains a Hamilt onian cycle then it is known as a Hamilto nian graph
- A graph is semi-Hamiltonian if it contains a Hamilto nian path but not a Hamilto nian cycle
- The onlywayto show that a graph is Hamilt onian or semi-Hamilto nian is to find a Hamilto nian cycle or Hamilt onian trail

- Exam Tip

- If you are given an adjacency matrix and are asked to find a Hamilto nian cycle, make sure that you sketch out the graph first

Worked example

Let G be the graph shown below.

Show that G is a Hamilto nian graph.

To show that the graph is Hamiltonian, identify a Hamiltonian cycle

One possible Hamiltonian cycle is:
A B
C F
D E A

Trave lling Salesman Problem

The travelling salesman problem requires you to find the route of least weight that starts and finishes at the same vertex and visits everyother vertex in the graph exactly once.

How do Isolve the travelling salesman problem?

- In the classical travelling salesman problem the following conditions are observed:
- the graph is complete
- the direct route between two vertices is the shortest route (it satisfies the triangle inequality)
- List all of the possible Hamilto nian cycles and find the cycle of least weight
- A complete graph with 3 vertices will have 2 possible Hamiltonian cycles, 4 vertices will have 6 possible cycles and a graph with 5 vertices will have 24 possible cycles
- There is no known algo rithm that guarantees finding the shortest Hamiltonian cycle in a graph so this method is onlysuitable for small graphs

(9) Exam Tip

- To remember the difference between the travelling salesman problem and the Chinese postman problem, remember that the salesman is interested in selling at each destination (vertex) whereas the postman wants to walk along everyroad (edge) in order to deliver the letters

Worked example

The graph below shows four to wns and the distances between them in km.

A salesman lives in city A and wishes to travel to each of the other three cities before returning home.

Find the shortest route that the salesman could take and state the total length of the route.

Exam Papers Practice

List all six possible Hamiltonian cycles and their weight

3.10.6 Bounds for Trave ling Sale sman Problem

This revision note discusses more complex situations for the travelling salesman problem and you may wish to refer to the revision note 3.10.5 Travelling Sales man Problem.

Table of Least Distances

In some real-life contexts a graph may not be complete nors atisfy the triangle inequality, for example, when lo oking at a rail network, not everystop will be connected to every other stop and it may be quicker to travel from stop A to stop B via stop C rather than to travel from A to B directly. Thus, the problem is considered to be a practical travelling salesman problem.

Finding the table of least dist ances (or weights) can convert a practical travelling salesman problem into a classical travelling salesman problem that can then be analysed.

What is a table of least distances?

- A table of least distances shows the shortest distance between anytwo vertices in a graph
- In some cases, the direct route between two vertices may not be the shortest
- By finding the table of least distances, a graph can be converted into a complete graph that satisfies the triangle inequality
- STEP 1

Fill in the information forvertices that are adjacent in the graph (at this stage check if the direct connections are actually the shortest route)

- STEP 2

Complete the rest of the table by finding the shortest route that can be travelled between each pair of vertices that are not adjacent

O Exam Tip

- Remember that the table of least values has a line of symmetry along the leading diago nal for an undirected graph, so complete one half carefully first, then map over to the second half

Worked example

The graph G below contains six vertices representing villages and the roads that connect them. The weighting of the ed ge represents the time, in minutes, that it takes to walk along a particular roo ad between two villages.

a) Explain why G is not complete graph.
 is not connected to every other vertex by a single edge, e.g. there is no single edge connecting B and D
b) Complete the table of least weights below.

	A	B	C	D	E	F
A						
B						
C						
D						
E						
F						

Exam Papers Practice
Fill in the table with the direct connections from the graph but check that they are the shortest routes as you go along

Shortest route between D and $F: D \rightarrow F=20$

$$
D \rightarrow E \rightarrow F=18
$$

Remember that in an undirected graph there will be a line of symmetry along the leading diagonal so start by filling in one half

	A	B	C	D	E	F
A	-					
B	14	-				
C	7	13	-			
D	11		5	-		
E		13	6	10	-	
F		9		18	8	-

Find the shortest routes between unconnected vertices
A and $E: \quad A \rightarrow C \rightarrow E=13$
A and $F: A \rightarrow C \rightarrow E \rightarrow F=21$

Copyright
© 2024 Exam Papers Practice
B and $D: B \rightarrow C \rightarrow D=18$
C and F :
$C \rightarrow E \rightarrow F=14$

	A	B	C	D	E	F
A	-	14	7	11	13	21
B	14	-	13	18	13	9
C	7	13	-	5	6	14
D	11	18	5	-	10	18
E	13	13	6	10	-	8
F	21	9	14	18	8	-

Nearest Neighbour Algorithm

As the number of vertices in a graph increases, so does the number of possible Hamilto nian cycles and it can become impractical to solve. The nearest neighbour algorithm can be used to find the upper bound for the minimum weight Hamilto nian cycle.

What is the nearest neighbour algorithm?

- For a complete graph with at least 3 vertices, performing the nearest neighbour algorithm will generate a low (but not necessarilyleast) weight Hamilto nian cycle
- This low weight cycle can be considered the upperbound
- The best upperbound is the upper bo und with the smallest value
- The nearest neighbour algorithm can only be used on a graph that is complete and satisfies the triangle inequality so the table of least distances should be found first
What are the steps of the nearest neighbour algorithm?
- STEP 1

Choose a starting vertex

- STEP 2

Follow the edge of least weight from the current vertex to an adjacent unvisited vertex (if there is more than one edge of least weight pick one at random)

- STEP 3

Repeat STEP 2 until all vertices have been visited

- STEP 4

Add the final edge to return to the starting vertex

- Exam Tip

- If asked to write down the route for the lower bound, don't forget that some of the entries in the table of lowest distances may not be direct routes between vertices!

Worked example

The table below contains sixvertices representing villages and the roo ads that connect them. The weighting of the ed ge represents the time in minutes that it takes to walk along a particular road between two villages.

	A	B	C	D	E	F
A	-	14	7	11	13	21
B	14	-	13	18	13	9
C	7	13	-	5	6	14
D	11	18	5	-	10	18
E	13	13	6	10	-	8
F	21	9	14	18	8	-

Starting at village A, use the nearest neighbo ur algorithm to find the upper bound of the time it would take to visit each village and return to village A.

Start at vertex A (column A) and select the edge of least weight $(A C)$, write it down

Move to column C, cross out the value that would join C to A as vertex A has already been visited. Select the edge of least weight (CD) and write down

Mover tocticcolumn D, cross out the values for the vertices already visited (A and C) and select the edge of least weight from the remaining values and write it down

Continue until all vertices have been visited then choose the final edge to get back from the last vertex to the starting position

	A	B	C	D	E	F
A	-	14	\nsim	$\not X$	18	$2 X$
B	14	-	13	18	13	9
C	7	13	-	5	6	184
D	11	18	5	-	10	18
E	13	13	6	10	-	8
F	21	9	14	18	8	-

Exam
Copyright
© 2024 Exam Papers Practice

Deleted Vertex Algorithm

The deleted vertex algorithm can be used to find the lo wer bound for the minimum weight Hamilt onian cycle.

What is the deleted vertexalgorithm?

- The deleted vertex algorithm can onlybe used on graph that is complete and satisfies the triangle inequality so the table of least distances should be found first
- Deleting different vertices may give different results, the best lower bound is the lower bound with the highest value
- If you have found a cycle the same length as the lower bound then you have found the shortest route for the travelling salesman problem
- If the lower bound and the upper bound are the same weight then you have found the shortest route for the travelling salesman problem

What are the steps of the deleted vertexalgorithm?

- STEP 1

Choose a vertex and delete it along with all edges that are connected to it

- STEP 2

Find the minimum spanning tree for the remaining graph (see revision note 3.10.3 Minimum Spanning Trees)

- STEP 3

Add the two shortest edges that were deleted from the original graph to the weight of the minimum spanning tree

- Exam Tip

- Be careful when using a weighted adjacency table not to get confused between using Prim's algo rithm and the nearest neighbo ur algo rithm.
- Remember that Prim's is used to find a minimum spanning tree, so vertices can be connected to several othervertices and hence can have more than one value in a column circled
- When using the table for the nearest neighbour algorithm, vertices cannot be revisited so only one value will be circled in each column

Worked example

The table below contains sixvertices representing villages and the ro ads that connect them. The weighting of the ed ges represents the time in minutes that it takes to walk along a particular road between two villages.

	A	B	C	D	E	F
A	-	14	7	11	13	21
B	14	-	13	18	13	9
C	7	13	-	5	6	14
D	11	18	5	-	10	8
E	13	13	6	10	-	8
F	21	9	14	18	8	-

a) Bydeleting vertexA and using Prim's algo rithm, find a lower bound for the time taken to start at village A, visit each of the other villages and return to village A

Copyright

Add edges in the order: BF (9)
FE (8)
CE (6)
CD (5)
Total weight of minimum spanning tree $=28$
Add weights of two edges of least weight connected to A : $A C$ (7)

Lower bound $=28+7+11=46$ minutes
b) Show that by deleting vertex B instead, a higher lower bound can be found.

	A	B	C	D	E	F
(1)	A	-	14	7	17	13
	B	14	-	13	18	13
(2)	C	T	13	-	5	6
(3)	D	14	18	5	-	18
(4)	E	18	13	6	10	-
(5)	F	218	9	14	18	8

Total weight of minimum spanning tree $=7+8+6+5$

$$
=26
$$

Weight of two edges of least weight connected to B: BF (9) $B C / D$ (13) Lower bound $=48$ ming

This is a higher lower bound than found when deleting vertex A

Papers

Copyright
© 2024 Exam Papers Practice

