Longitudinal \& Transverse Waves TOPIC QUESTIONS

Level	A Level			
Subject	Physics			
Exam Board	AQA			
Paper Type	Multiple Choice			
Time Allowed : 30min				

1. A sonar transmitter on a ship produces pulses of sound waves.Each pulse of sound waves contains 12 complete oscillations.
The frequency of these waves is 8.0 kHz and the speed of sound in seawater is $1.5 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$.
What is the length of one pulse in seawater?

A 0.188 m

B 2.25 m

C $2.25 \times 10^{3} \mathrm{~m}$

D $1.44 \times 10^{5} \mathrm{~m}$

2. The frequency of the first harmonic of a wire fixed at both ends is 300 Hz . The tension in the wire is now doubled.

What is the frequency of the first harmonic after this change?

A 150 Hz

B $\quad 210 \mathrm{~Hz}$

C 420 Hz

D 600 Hz
3. The fundamental frequency f is the lowest frequency heard when a stretched string is vibrating The string is now lightly touched one third of the way along its length.

What is the lowest frequency heard?

A $\frac{f}{3}$
B $\frac{2 f}{3}$

C f

D $3 f$
4. Two points on a progressive wave have a phase difference of $\frac{\pi}{6} \mathrm{rad}$ The speed of the wave is $340 \mathrm{~m} \mathrm{~s}^{-1}$

What is the frequency of the wave when the minimum distance between the two points is 0.12 m ?

A 240 Hz

B 470 Hz

C 1400 Hz

D 2800 Hz
5. Which statement is correct about the properties of an unpolarised electromagnetic wave as itpasses through a polariser?

A The wave remains unchanged.
B The wave does not pass through the polariser.
C The wave's electric field oscillates along the direction of travel.
D The intensity of the wave is reduced
6. Which characteristics of monochromatic light change when the light passes from air into glass?

A Speed, wavelength and frequency.

B Speed and frequency only.

C Speed and wavelength only.

D Wavelength and frequency only.

7. Which is a description of the pattern produced when monochromatic light passes through a verynarrow slit?

A A series of equally-spaced light and dark fringes.
B A narrow central maximum with wider side fringes.
C A few bright fringes that are widely spaced.
D A wide central maximum with narrower side fringes.
8. A ray of light is incident on a glass-air boundary of a rectangular block as shown.

The refractive index of this glass is 1.5
The refractive index of air is 1.0
The angle of incidence of the light at the first glass-air boundary is 44°

What is the path of the ray of light?

A

B

C

D
9. Rays of light are incident at the same angle θ on the core-cladding boundary of optical fibres \mathbf{P} and \mathbf{Q}.
The cores of \mathbf{P} and \mathbf{Q} have the same refractive index n.
\mathbf{P} and \mathbf{Q} are the same length L.
The core diameter of \mathbf{P} is half that of \mathbf{Q}.

optical fibre \mathbf{P}

optical fibre Q

The time for the ray to travel along optical fibre \mathbf{P} is

$$
\frac{n L}{c \sin \theta}
$$

where c is the speed of light in a vacuum.
What is the time for the ray to travel along optical fibre \mathbf{Q} ?

A $\frac{n L}{c \sin \theta}$

B $\frac{n L}{2 c \sin \theta}$
c $\frac{2 n L}{c \sin \theta}$

D $\frac{4 n L}{c \sin \theta}$

For more help, please visit www.exampaperspractice.co.uk
10. A diffraction grating is illuminated normally with light of wavelength $6.5 \times 10^{-7} \mathrm{~m}$ When a screen is 1.5 m from the grating, the distance between the zero and first-order maximaon the screen is 0.30 m

What is the number of lines per mm of the diffraction grating?

A 3.3×10^{-6}
B 3.3×10^{-3}

C 3.0×10^{2}
D 3.0×10^{5}
11. The diagram shows a snapshot of a wave on a rope travelling from left to right.

At the instant shown, point \mathbf{P} is at maximum displacement and point \mathbf{Q} is at zero displacement. Which one of the following lines, A to D , in the table correctly describes the motion of \mathbf{P} and \mathbf{Q} inthe next half-cycle?

	P	Q
A	falls then rises	rises
B	falls then rises	rises then falls
C	falls	falls
D	falls	rises then falls

12. The speed of sound in water is $1500 \mathrm{~m} \mathrm{~s}^{-1}$. For a sound wave in water having frequency 2500 Hz , what is the minimum distance between two points at which the vibrations are $\overline{3} \mathrm{rad}$ out of phase?

A $\quad 0.05 \mathrm{~m}$
B $\quad 0.10 \mathrm{~m}$
C 0.15 m
D $\quad 0.20 \mathrm{~m}$
13. Which one of the following properties of light waves do polarising sunglasses depend on for theiraction?

Light waves may
A interfere constructively.
B interfere destructively.
C be polarised when reflected from a surface.
D be polarised by the lens in the eye.
14. Which line, A to D, in the table shows correct relationships for the respective wavelengths, λ_{L}, λ_{s}, and frequencies, $f_{\mathrm{L}}, f_{\mathrm{s}}$, of light waves and sound waves?

	wavelength \mathbf{S}	frequencies
A	$\lambda_{\mathrm{L}} \ll \lambda_{\mathrm{s}}$	$f_{\mathrm{L}} \gg f_{\mathrm{s}}$
B	$\lambda_{\mathrm{L}} \ll \lambda_{\mathrm{s}}$	$f_{\mathrm{L}} \ll f_{\mathrm{s}}$
C	$\lambda_{\mathrm{L}} \gg \lambda_{\mathrm{s}}$	$f_{\mathrm{L}} \gg f_{\mathrm{S}}$
D	$\lambda_{\mathrm{L}} \gg \lambda_{\mathrm{s}}$	$f_{\mathrm{L}} \ll f_{\mathrm{s}}$

15. Two points on a progressive wave differ in phase by $\frac{\pi}{4}$. The distance between them is 0.5 m , andthe frequency of the oscillation is 10 Hz . What is the minimum speed of the wave?

A $\quad 0.2 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 10 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 20 \mathrm{~m} \mathrm{~s}^{-1}$

D $\quad 40 \mathrm{~m} \mathrm{~s}^{-1}$
16. The diagram shows a microwave transmitter T which directs microwaves of wavelength eat two slits S_{1} and S_{2} formed by metal plates. The microwaves that pass through the two slits are detected by a receiver.

receive
rat O

When the receiver is moved to P from O, which is equidistant from S_{1} and S_{2}, the signal received decreases from a maximum to a minimum. Which one of the following statements is a correct deduction from this observation?

A The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=0.5 \lambda$
B \quad The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=\lambda$
c The path difference $S_{1} P-S_{2} P=0.5 \lambda$
D The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}$

$$
=\lambda
$$

17.

Point sources of sound of the same frequency are placed at S_{1} and S_{2}. When a sound detector is slowly moved along the line $P Q$, consecutive maxima of sound intensity are detected at W and Y and consecutive minima at X and Z . Which one of the following is a correct expression for the wavelength of the sound?

A $\quad \mathrm{S}, \mathrm{X}-\mathrm{S}, \mathrm{W}$
B $\quad \mathrm{S}_{1} \mathrm{Y}-\mathrm{S}, \mathrm{X}$
c $\quad \mathrm{S}_{1} \mathrm{X}-\mathrm{S}_{2} \mathrm{X}$
D $S_{1} Y-$
$S_{2} Y$
EXAM PAPERS PRACTICE
18. In a Young's double slit interference experiment, monochromatic light placed behind a single slit illuminates two narrow slits and the interference pattern is observed on a screen placed some distance away from the slits. Which one of the following decreases the separation of the fringes?

A increasing the width of the single slit
B decreasing the separation of the double slits
C increasing the distance between the double slits and the screen
D using monochromatic light of higher frequency
19. Light of wavelength λ is incident normally on a diffraction grating of slit separation 4λ. What is theangle between the second order maximum and third order maximum?

A 14.5°
B 18.6°
C 48.6°
D
71.4

。
20. Interference fringes, produced by monochromatic light, are viewed on a screen placed a distance Dfrom a double slit system with slit separation s. The distance between the centres of two adjacentfringes (the fringe separation) is W. If both S and D are doubled, what will be the new fringe separation?

A $\frac{w}{4}$
B \quad w
c $2 w$
D 4W
EXAM PAPERS PRACTICE

