

Page 1 of 24

3.1 Graph traversal Vectors Mark Scheme

Page 2 of 24

Mark schemes

Q1.
(a) All marks AO2 (analyse)

 1 2 3 4 5 6

1 0 2 5 3 0 8

2 2 0 1 0 0 0

3 5 1 0 0 0 4

4 3 0 0 0 1 0

5 0 0 0 1 0 5

6 8 0 4 0 5 0

Alternative answer

 1 2 3 4 5 6

1 0 2 5 3 0 8

2 0 1 0 0 0

3 0 0 0 4

4 0 1 0

5 0 5

6 0

Alternative answer

 1 2 3 4 5 6

1 0

2 2 0

3 5 1 0

4 3 0 0 0

5 0 0 0 1 0

6 8 0 4 0 5 0

Mark as follows:

1 mark 0s in correct places

1 mark all other values correct

Page 3 of 24

I. non-zero symbols used to denote no edge but only for showing no edge
going from a node to itself

2

(b) All marks for AO1 (understanding)

Adjacency list appropriate when there are few edges between vertices // when
graph/matrix is sparse; NE. few edges

Adjacency list appropriate when edges rarely changed;

Adjacency list appropriate when presence/absence of specific edges does not
need to be tested (frequently);

A. Alternative words which describe edge, eg connection, line, arc

Max 2
2

(c) Mark is for AO2 (apply)

It contains a cycle / cycles;
1

(d) Mark for AO1 (knowledge)

A graph where each edge has a weight/value associated with it;
1

(e) All marks AO2 (apply)

Mark as follows:

I. output column
1 mark first value of A is 2

1 mark second value of A is 5 and third value is 3

1 mark fourth and subsequent values of A are 8, 3, 7, 4, 9 with no more values

after this
1 mark D[2] is set to 2 and then does not change

Page 4 of 24

1 mark D[3] is set to 5 and then changes to 3 and does not change again

1 mark correct final values for each position of array P

Page 5 of 24

1 mark correct final values for D[1], D[4], D[5], D[6]

Page 6 of 24

Max 6 marks if any errors
7

(f) Mark is for AO2 (analyse)

The shortest distance / time between locations/nodes 1 and 6;

NE distance / time between locations/nodes 1 and 6

R. shortest route / path
1

(g) All marks AO2 (analyse)

Used to store the previous node/location in the path (to this node);

Allows the path (from node/location 1 to any other node/location) to be
recreated // stores the path (from node/location 1 to any other node/location);

Max 1 if not clear that the values represent the shortest path

Page 7 of 24

Alternative answer

Used to store the nodes that should be traversed;

And the order that they should be traversed;

Max 1 if not clear that the values represent the shortest path
2

[16]

Q2.
(a) John, Rachel, Paul;

R. If not in correct order
I. Incorrect spellings of names, as long as the name is
comprehensible
I. Quotation marks

1

(b)

 Time Complexity Tick one box

 O(n)

 O(log n) ✔

 O(n2)

A. Alternative symbol which clearly indicates just one box
e.g. cross, Y, Yes

R. Answers in which more than one row is ticked
1

(c) 1 mark for Start Index containing the index of the array item
storing the root node (John)
1 mark for John, Hannah and Rachel being stored, each
with left and right pointer values storing the indices of the

correct child nodes
1 mark for Bradley, Jo, Paul and Tina being stored, each
with left and right pointers storing appropriate rogue values
e.g. -1, 0, NIL, NULL R. A dash or blank as the rogue value

Three example solutions are shown below, but the data
items can be stored at any positions within the array, as
long as the pointers correctly reflect this.

Start Index = 1

 Index Left Pointer Data
Right

Pointer

 [1] 2 John 3

 [2] 4 Hannah 5

 [3] 6 Rachel 7

 [4] –1 Bradley –1

 [5] –1 Jo –1

 [6] –1 Paul –1

 [7] –1 Tina –1

Start Index = 4

Page 8 of 24

 Index Left Pointer Data
Right

Pointer

 [1] –1 Bradley −1

 [2] –1 Jo –1

 [3] 1 Hannah 2

 [4] 3 John 6

 [5] –1 Paul –1

 [6] 5 Rachel 7

 [7] –1 Tina –1

Start Index = 1

 Index Left Pointer Data
Right

Pointer

 [1] 2 John 5

 [2] 3 Hannah 4

 [3] –1 Bradley –1

 [4] –1 Jo –1

 [5] 6 Rachel 7

 [6] –1 Paul –1

 [7] –1 Tina –1
3

(d) Difference between Static and Dynamic (2 marks):

Static structures have fixed (maximum) size whereas size of
dynamic structures can change // Size of static structure

fixed at compile-time whereas size of dynamic structure can
change at run-time;
Static structures can waste storage space/memory if the
number of data items stored is small relative to the size of
the structure whereas dynamic structures only take up the
amount of storage space required for the actual data;
Static structures (typically) store data in consecutive memory
locations, which dynamic data structures (typically) do not //
Dynamic data structures (can) (require memory to) store
pointer(s) to the (next items which static structures typically
do not need); MAX 2
A. Just one side of points, other side is by implication

Heap (1 mark):
Memory allocated/deallocated at run-time/for new items (to
dynamic data structure);
(Provides a) pool of free/unused/available memory;
N.E. To store new items

3

(e) (i) Bradley, Hannah, Jo, John, Paul, Rachel, Tina;
R. If not in correct order
I. Incorrect spelling of names, so long as name is
comprehensible
I. Quotation marks

1

(ii) (Ascending) Alphabetic order;
A. Alphabetic, it is sorted

Page 9 of 24

1

(f) Graph may contain cycles / loops / circuits (so must keep
track of which nodes already visited);
Graph may not be connected (so some nodes may be
unreachable);
Graph may be weighted (so a more complex algorithm that
accounts for the weights may be required);

N.E. Graphs can be directed

MAX 1
1

[11]

Q3.
(a) Mark is for AO1 (understanding)

It contains a cycle / cycles;
1

(b) All marks AO2 (apply)

Vertex
(in

Figure 1

Adjacent
vertices

1 2,3

2 1,3,4

3 1,2,5

4 2

5 3

Mark as follows:
1 mark: Three correct rows;
1 mark: All rows correct;
I Order of items within each list / row.

2

(c) All marks AO1 (understanding)

Adjacency list appropriate when there are few edges between
vertices / / when graph / matrix is sparse;
when edges rarely changed;
when presence / absence of specific edges does not need to be
tested (frequently);
Max 2
A Alternative words which describe edge, eg connection, line.

2

(d) All marks AO2 (apply)

Page 10 of 24

 Cat

NoOfCats A B C 1 2 3 4 5

5 1

 2 1 1

 1 2

 2 2

 3 1 1

 1 2

 2

 1 3

 2

 3 3

 4 1 1

 2

 3

 4 1

 5 1 1

 2

 3

 4

 5 1

Mark as follows:
1 mark: A is set the sequence indicated in the table;

1 mark: B is set the sequence indicated in the table;

1 mark: C is set the sequence indicated in the table;

1 mark: NoOfCats is set to 5, Cat[1] is set to 1;

1 mark: Cat[2] is set to 2 and Cat[3] is set to 3;

1 mark: Cat[4] is set to 1 and Cat[5] is set to 1;

Info for examiner: Ignore the empty cells in the sequences - values do not
need to be set in the rows indicated in the table.

6

(e) Mark is for AO2 (analyse)

Page 11 of 24

To work out which cats will travel together to the show / /
To plan which cats will be in the van on which journey to the cat show / /
To colour the vertices of a graph / /
To create a decomposition of a graph;
Max 1

1

(f) All marks AO1 (knowledge)

1 mark (1 from): The problem can be solved / / algorithm exists for problem;
But it cannot be solved in polynomial time / / but not quickly
enough to be useful;
Max 2
1 mark: It takes an unreasonable amount of time; to solve;
A Too long time but R Long time

2

(g) All marks AO1 (understanding)

1 mark: Use of heuristic; algorithm that makes a guess based on experience;
That provides a close-to-optimal solution / approximation; that only works in

some cases; A non-optimal

Example of heuristic method eg hill-climbing / stochastic / local improvement /
greedy algorithms / simulated annealing / trial and error / any reasonable
example;

1 mark: Relax some of the constraints on the solution; A Solve simpler
version of problem

2

[16]

Q4.

(a)

Description Correct letter
(A-D)

A graph that is not connected. B;

A graph that is a tree. A;

If a letter has been used more than once then mark it as correct in the row that
it is correct in, if any.

2

(b) Example 1

Page 12 of 24

Example 2

1 mark for labelling matrix with indices running from 1 to 6 on both axis and
filled only with 0s and 1s, or some other symbol to indicate presence /
absence of edge. e.g. T / F (allow a third symbol along diagonal). Absence
can be represented by an empty cell.
1 mark for correct values entered into matrix, as shown in either example
above

In Example 2, the shaded portion can be in either half − some indication must
be made that half of the matrix is not being used. This could just be leaving it
blank, unless the candidate has also represented absence of an edge by
leaving cells blank.

Allow use of a third symbol in the central diagonal to indicate it unused, as it
would not make sense to use it in this example.

Accept column and row labels in any order so long as they correspond to the

data i.e. do not have to be in sequence 1 to 6.
2

(c)

Page 13 of 24

1 mark for having the correct value changes in each region highlighted by a

rectangle and no incorrect changes in the region. Ignore the contents of any
cells that are not changed.
A Alternative indicators that clearly mean True and False.
A It is not necessary to repeat values that are already set (shown lighter in
table)
A For the queue column, for cells that should only have one value in them,
accept if the student has written out the value twice at both the Front and the
Rear, so long as this has been done consistently throughout the table. eg “4”
written as “4 4”.

6

(d) So that packets / data arrive as quickly as possible / more quickly / with lower
latency;
So that packets / data are delivered at lower cost / lowest cost;
So that routers do not have to process more packets / data due to
unnecessary hops being made;
NE it is quicker without clarifying what “it” refers to
MAX 1

1

[11]

Q5.
(a) Omitting unnecessary details (from a representation) / / Storing only those details

which are necessary (in the context of the problem being solved);
R responses that do not refer to abstraction in the context of data or modelling

1

Page 14 of 24

(b) SUBJECT MARKING POINTS:

Representation as a graph:

Vertex / node represents a station; A junction between railway lines

Edge / arc / line represents a (direct) connection / railway line between two
stations; R vector
Graph must be weighted / / edges have weights;
Distance between two stations must be written on edge / / stored with edge / /
weights will be distances;
Could be more than one direct route between two stations; in which case

shortest of the distances would be stored as the weight;

Graph would be undirected as trains can travel in both directions between
each station;
OR
Graph would be directed as some lines may only be traversable in one
direction;
Note: Only accept one of the above two points about whether the graph would
be directed or undirected. Must have reason.

Implementation as array:

Each station assigned a (unique) number (to be used as array index); - This
mark available regardless of how the rest of the implementation is done

Using an adjacency matrix:

The (adjacency) matrix would be a two-dimensional array (of numbers);
Array contains one row and one column for each station / / An n x n array is
required to represent n stations; A rows and columns labelled with stations for
BOD mark
If there is a (direct) connection between the two stations, store the distance
between the two stations at the intersection of the row / column for the
stations;
If there is no (direct) connection between the two stations, store a value to
indicate this at the intersection of the row / column for the stations; A
examples of values eg 0, ∞, NULL that could not be valid distances including
any alphanumeric indicator

Using an adjacency list as a 2d array of numbers:

Adjacency list could be stored in a two-dimensional array (of records or
similar);
In one dimension there would have to be n rows / columns for n stations / /
one row / column per station;
In the other dimension the number of columns / rows would be determined by
the highest degree of any vertex / / the maximum number of neighbours a
vertex has / / the maximum number of (direct) connections that any station
has;
If a station is (directly) connected to another station then in the row / column
for the first station, a new entry (record) would be made consisting of the
number of / / an identifier for the second station and the distance to it; NE just
to state identifier, must have distance as well

Note: Also accept implementation in two two-dimensional arrays, with one
storing the stations and the other the distances, as long as made clear station
identifiers and distances stored in corresponding positions.

Page 15 of 24

Using an adjacency list as a 1d array of strings:

Adjacency list could be stored in a (one-dimensional) array of strings;
One row per station;
The string for a station contains, for each station that it is connected to, the
station identifier / name and distance;
Use of a delimiter between values;

REFER ANY OTHER WORKABLE SOLUTION TO A TEAM LEADER

If comparison made between adjacency matrix and adjacency list (not
asked for):

Adjacency list might be more efficient (in terms of storage space) as graph is
likely to be sparse / / as few edges between vertices / / as most stations only
(directly) connected to a small number of other stations;
Adjacency matrix might be more efficient (in terms of speed) as shortest route
finding algorithm is likely to need to lookup many distances when computing a
route;

Note on use of diagrams: Candidates may choose to use diagrams to help
clarify their responses. When marking, use may be made of such diagrams to
help clarify understanding of the written description, however as this question
assesses quality of written communication, marks should be awarded for the
written description, not directly for the diagrams themselves.

8

HOW TO AWARD MARKS:

Mark Bands and Description

To achieve a mark in this band, candidates must meet the subject criterion
(SUB) and all 5 of the quality of written communication criteria (QWCx).

SUB Candidate has covered the graph representation and array implementation

in detail and all or almost all of the required detail for an implementation is
present. The candidate has made at least seven subject-related points.

QWC1 Text is legible.
QWC2 There are few, if any, errors of spelling, punctuation and grammar. Meaning

is clear.
QWC3 The candidate has selected and used a form and style of writing appropriate

to the purpose and has expressed ideas clearly and fluently.
QWC4 Sentences (and paragraphs) follow on from one another clearly and

coherently.
QWC5 Appropriate specialist vocabulary has been used.

7-8

To achieve a mark in this band, candidates must meet the subject criterion
(SUB) and 4 of the 5 quality of written communication criteria (QWCx).

SUB Candidate has covered both the graph representation and array

implementation, making some valid points for each, but the level of detail
may not be sufficient to implement. The candidate has made at least five
subject-related points.

QWC1 Text is legible.
QWC2 There may be occasional errors of spelling, punctuation and grammar.

Meaning is clear.
QWC3 The candidate has, in the main, used a form and style of writing appropriate

Page 16 of 24

to the purpose, with occasional lapses. The candidate has expressed ideas
clearly and reasonably fluently.

QWC4 The candidate has used well-linked sentences (and paragraphs).
QWC5 Appropriate specialist vocabulary has been used.

5-6

To achieve a mark in this band, candidates must meet the subject criterion
(SUB) and 4 of the 5 quality of written communication criteria (QWCx).

SUB Candidate has made some relevant points but the description is either

lacking in detail or only covers one of the graph representation or array
implementation.

QWC1 Most of the text is legible.
QWC2 There may be some errors of spelling, punctuation and grammar but it

should still be possible to understand most of the response.
QWC3 The candidate has used a form and style of writing which has many

deficiencies. Ideas are not always clearly expressed.
QWC4 Sentences (and paragraphs) may not always be well-connected.
QWC5 Specialist vocabulary has been used inappropriately or not at all.

1-4

Candidate has made no relevant points.
0

Note: Even if English is perfect, candidates can only get marks for the points
made at the top of the mark scheme for this question.

If a candidate meets the subject criterion in a band but does not meet the
quality of written communication criteria then drop mark by one band,
providing that at least 4 of the quality of language criteria are met in the lower
band. If 4 criteria are not met then drop by two bands.

[9]

Q6.
(a) Connected // There is a path between each pair of vertices;

Undirected // No direction is associated with each edge;
Has no cycles // No (simple) circuits // No closed chains // No closed paths in
which all the edges are different and all the intermediate vertices are different
// No route from a vertex back to itself that doesn’t use an edge more than
once or visit an intermediate vertex more than once;
A no loops
Alternative definitions:
A simple cycle is formed if any edge is added to graph;

Any two vertices can be connected by a unique simple path;
Max 1

(b) No route from entrance to exit / through maze;
Maze contains a loop/circuit ;
A more than one route through maze;
Part of the maze is inaccessible / enclosed;
R Responses that clearly relate to a graph rather than the maze

Max 1

(c)

Page 17 of 24

(allow some symbol in the central diagonal to indicate unused)

or

(with the shaded portion in either half – some indication must be made that
half of the matrix is not being used. This could just be leaving it blank, unless
the candidate has also represented absence of an edge by leaving cells blank)

1 mark for drawing a 7x7 matrix, labelled with indices on both axis and filled
only with 0s and 1s, or some other symbol to indicate presence/absence of
edge. e.g. T/F. Absence can be represented by an empty cell.

1 mark for correct values entered into matrix, as shown above;
2

(d) (i) Routine defined in terms of itself // Routine that calls itself;
A alternative names for routine e.g. procedure, algorithm
NE repeats itself

1

(ii) Stores return addresses;
Stores parameters;
Stores local variables; NE temporary variables

Stores contents of registers;
A To keep track of calls to subroutines/methods etc.

Max 1

Procedures / invocations / calls must be returned to in reverse order (of
being called);
As it is a LIFO structure;
A FILO
As more than one / many return addresses / sets of values may need to
be stored (at same time) // As the routine calls itself and for each
call/invocation a new return address / new values must be stored;

Max 1
2

(e)

Page 18 of 24

1 mark for having the correct values changes in each region highlighted by a
rectangle and no incorrect changes in the region. Ignore the contents of any
cells that are not changed.

A alternative indicators that clearly mean True and False.
A it is not necessary to repeat values that are already set (shown lighter in
table)

5

[12]

Q7.
(a)

Page 19 of 24

1 mark for all 5 lines correctly drawn
1 mark for all 5 arrowheads pointing in correct directions
Max 1 if more than 5 lines drawn by candidate (note that dotted arrow is given
in question)

A arrowheads at any position on line
2

(b) Adjacency matrix appropriate when there are many edges between vertices //
when edges may be frequently changed // when presence/absence of specific
edges needs to be tested (frequently)
Adjacency list appropriate when there are few edges between vertices // when
graph is sparse // when edges rarely changed //when presence/absence of
specific edges does not need to be tested (frequently)
A alternative words which describe edge e.g. connection, line

2

(c) Connected // There is a path between each pair of vertices;
Undirected // No direction is associated with each edge;
Has no cycles // No (simple) circuits // No closed chains // No closed paths in
which all the edges are different and all the intermediate vertices are different
// No route from a vertex back to itself that doesn’t use an edge more than
once or visit an intermediate vertex more than once;
Alternative definitions:
Graph with no cycles, and a simple cycle is formed if any edge is added to it;;
Graph which is connected, and it is not connected anymore if any edge is
removed from it;;
Graph in which any two vertices can be connected by a unique simple path;;
(Note: not just adjacent vertices)

Graph which is connected and has n - 1 edges where n is no of vertices;;
Graph which has no simple cycles and has n - 1 edges where n is no of
vertices;;

Max 2

(d)

Page 20 of 24

1 mark for Jack as root
1 mark for Bramble and Snowy as children of Jack
1 mark for four correct children of Bramble and Snowy

DPT if arrows drawn instead of lines
DPT if any node has more than 2 child nodes
A “mirror image” answers which are consistent.

3

(e) For solution with 3 arrays:
One array stores data items;
One array for left child pointers;
One array for right child pointers;
Pointers stored at same location in arrays as corresponding data item;
For solution with 1 array of records:

Record created to store data item and pointers;
One pointer to left child;
One pointer to right child;
For either of the above solutions:
Rogue value (allow example) used to indicate no child;
Variable indicates position in array(s) of root node // Root node stored at first
location/start of array(s);
If answered as diagram:
Column for data with at least three correct data items in it;
Use of rogue value for a node that does not have child;
Correct value for a start pointer variable indicating position of root node in the
array (not drawn as an arrow, array indices must be labelled);

Column for left child pointers*;
Column for right child pointers*;
* = To get these marks, there must be a sufficient number of pointers to
demonstrate that the data structure is a representation of a binary tree, but it is
not necessary for every item to be shown. Also the array indices must be
shown.

Max 3

[12]

Page 21 of 24

Examiner reports

Q1.
In previous years there have been questions asking students to complete an adjacency

matrix based on a diagram of a graph and most students were able to answer question (a)
this year. This was the first time that an adjacency matrix for a weighted graph had been
asked for and some students had clearly not seen this type of question before and only
included an indicator that there was an edge between two nodes rather than the weight of
the edge between the two nodes; this meant they only got one of the two marks available
for this question.

Questions (b)-(d) were about graph theory. Question (c) was well-answered with students
identifying that it was not a tree because there were cycles. The most common incorrect
answer was to say that it wasn’t a tree because the edges have weights associated with
them. Question (d) was also well-answered. Answers to (b) often showed that students
were not as familiar with adjacency lists as they are with adjacency matrices.

For question (e) students had to complete a trace of Djikstra’s Algorithm. This topic was

not on the previous A-level specification and was often poorly answered suggesting many
students had not tried to complete a trace for the algorithm before. For question (f) many
students gave an answer that explained the point of Djikstra’s Algorithm (find the shortest
route from a node to each other node) rather than what the specific output in the algorithm
given in the question would be (the distance of the shortest route from node 1 to node 6).

Q2.
This question was about data structures, with much of the emphasis placed on binary
trees.

Parts (a) and (b), which related to searching a binary search tree, were both well
answered with two thirds of candidates correctly identifying the items that would be
examined during the search and over half correctly identifying the time complexity of the
search operation for part (b).

For part (c) candidates had to represent a binary tree using an array of records. This was
well tackled with candidates correctly using pointers to indicate the relationships between
the data items. It was not enough to represent leaf node branches with a blank space or a
dash for the left and right pointers. An appropriate value such as an unused index number
eg 0 or a NULL value was required.

Most candidates achieved a reasonable number of marks for question part (d). The key
difference between a static and dynamic data structure, that the former had a fixed size
that was defined at compile time and that the latter had a variable size which could
change at run time was well understood. However, not many candidates went on to
explain any other differences, such as the fact that memory space might be wasted if a
static structure was relatively empty or that a static structure would generally be allocated
consecutive memory locations. The purpose of the heap was well understood, as being a

pool of available unused memory that could be allocated to a dynamic structure at
runtime. The most common misunderstanding was that the heap was where a dynamic
structure stored its data. Some candidates made did not get the mark for explaining the
purpose of the heap as whilst they made clear that the heap was used for dynamically
allocating memory, their responses did not make clear that the heap was the unused
memory rather than the memory that new data was stored in.

Part (e) (i) was well answered with the majority of candidates correctly identifying the

Page 22 of 24

order that the items would be output. Virtually everyone who correctly identified the order
explained the significance of this for part (e) (ii).

For part (f) candidates had to explain why graph traversal was a more complex problem
than tree traversal. Many responses recognised that features such as cycles and
weighting were the key factors that might contribute to this. Some candidates went
beyond what was required and provided excellent explanations of, for example, how a
cycle in a graph might cause a problem for a traversal algorithm.

Q4.

This question was about graphs and graph traversal in the context of a computer network.

Part (a) required students to identify graphs with specific properties. Almost all students
were able to achieve one of the two marks and just over a third achieved both. Part (b)
was also well tackled, with over 90% of students achieving both marks for correctly
completing the adjacency matrix.

For part (c) students had to trace an algorithm for performing a breadth first search of a
graph. This was well tackled, with over half of students achieving at least four of the six
marks. The most commonly made mistakes were to incorrectly record the queue contents
and to update the Parent array incorrectly.

For part (d) students needed to explain why finding the shortest route was a useful thing
to do in the context of the question. Just over half of students correctly explained that this
would allow data to be transmitted more quickly or would reduce congestion. Some

students missed out on achieving a mark by giving responses that were not in context.

Q5.
(a) More than half of the candidates were able to correctly define abstraction in this

part. The question was asked in the context of data representation, so an
appropriate definition would have been to store only those details of a problem /
model that were required in the context of the problem being solved. Common
mistakes were to state that unnecessary complexity would be hidden from the user,
rather than being removed from the model altogether, or to define a simulation
instead of abstraction.

(b) This part was the question that assessed quality of written communication. As such,
it was particularly important the candidates used technical terms accurately when
writing their responses. Almost all candidates covered both aspects of the question:

the representation as a graph and the representation using arrays as an adjacency
matrix or list.

In almost all responses, the graph part of the answer was better than the array
representation part, with most students being able to correctly explain how the
underground railway network could be represented as a graph. Some students lost
marks by not using the correct terminology or by drawing diagrams but not
explaining points such as that a station would be represented as a node.

As the question paper stated, diagrams needed to be fully explained if they were
used. A common mistake was to state that stations would be represented by nodes
and that railway tracks would be represented by vertices; vertex in a synonym for
node but was being mistakenly used instead of the term edge or arc. A small but not
insignificant number of students misinterpreted the term graph and explained how

the network might be represented as a bar chart or scatter graph.

Page 23 of 24

The part of the question relating to the representation using arrays as an adjacency
matrix or list was poorly tackled. Many students discussed how the representation
could be drawn out as a grid or list on paper instead of how it could be represented
using arrays in a programming language, or described solutions that were not really
either an adjacency matrix or list.

Those who decided to represent the data as an adjacency matrix often suggested
that the station names would be written into the array rather than that stations would
be associated with a number that would be used as an index into the array. That
said, pleasingly, most students who suggested a matrix representation recognised

that the distances would be filled into the array at the appropriate location and that a
null value would be used where there was no route. Some students used an array
containing only 0s and 1s instead of distances.

Students who chose to present an adjacency list solution rarely explained how this
would be achieved in a programming language, focussing instead on how it could be
depicted diagrammatically. Another common mistake was to talk about pointers,
without explaining how these would work in the context of the array.

Q6.
Part (a): Two thirds of students were able to identify one property that a graph must have
to be a tree. A small number confused a tree with a rooted tree and made assertions such
as that a tree must have a root, which is incorrect.

Part (b): This question part tested students’ understanding of the method being used to
represent a maze as a graph. The majority of students correctly identified a feature of the
maze that would stop its graph being a tree. The most commonly seen correct response
identified that there could be a loop in the maze. Other possibilities included that part of
the maze could be inaccessible or that part of the maze might only be traversable in one
direction. Some students failed to achieve the mark because they re-answered part (a),
discussing a feature of a graph that would stop it being a tree, rather than a feature of a
maze.

Part (c): Students were asked to represent the graph of the maze as an adjacency matrix.
Three quarters of students scored both marks for this question part. Responses where
symbols other than 0s and 1s were used in the matrix were accepted, as long as they
could be viewed as an accurate representation of the graph.

Part (d)(i): The vast majority of students were able to identify that a recursive routine

would call itself. A small number asserted that a recursive routine would repeat itself,
which was not considered to be enough for a mark as this could equally have been a
description of iteration.

Part (d)(ii): Most students scored some marks for this question part, but less than a fifth
achieved both. The most widely understood point was that the data would need to be
removed from the stack in the reverse of the order that it was put onto it so that the
recursion could be unwound. Less well understood was the types of data that would be
stored, such as return addresses and local variables.

Part (e): Most students achieved some marks on this question part and around a quarter
achieved all five for a fully complete trace. The most commonly made mistake was to
update, incorrectly, the Completely Explored array as the recursive calls were made, as
opposed to when the recursion unwound.

Q7.

Page 24 of 24

Part (a): The use of the adjacency matrix was clearly well understood with all but a few
candidates achieving full marks.

Part (b): There were some good responses to this question part, but also quite a lot of
confused answers. An adjacency matrix is more appropriate when there are many edges
in a graph, or if these edges need to be checked or updated frequently. An adjacency list
is appropriate for graphs with few edges (sparse graphs) or where the edges are not
checked / updated frequently.
Neither the number of vertices in a graph nor the available memory would influence the
choice.

There was confusion over the use of terminology with some candidates apparently using
the term vertex to mean edge.

Part (c): This question part was poorly answered, with only a third of candidates scoring
any marks. A tree is a graph that is connected, undirected and has no cycles. Some
candidates gave responses that referred only to specific types of tree, either rooted trees
or binary trees.
These responses did not gain credit.

Part (d): The vast majority of candidates knew how to construct a binary search tree. The
most common cause of error appeared to be candidates forgetting the order of the letters
in the alphabet rather than forgetting the principles that should be used to construct the
tree. A small number of candidates mistakenly drew arrows instead of lines between
nodes.

Part (e): There were some good responses to this question part but many were
disappointing and a surprising number of candidates did not write a response at all. Many
candidates who did answer chose to use a diagram to illustrate their response which was
quite acceptable, so long as the diagram included enough detail to make clear that it was
a representation of a binary tree.

