铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

3.1 Geometry Toolkit

3.1.1 Coordinate Geometry

Basic Coordinate Geometry

What arecartesian coordinates?

- Cartesian coordinates are basicallythe x-ycoordinate system
- They allow us to label where things are in a two-dimensio nal plane
- In the 2D cartesian system, the horizontal axis is labelled x and the vertical axis is labelled y

What can we do with coordinates?

- If we have two points with coordinates $\left(x_{1}, y_{7}\right)$ and $\left(x_{2}, y_{2}\right)$ then we should be able to find
- The midpoint of the two points
- The distance between the two points
- The gradient of the line between them

Howdolfind the midpoint of two points?

- The mid point is the average (middle) point
- It can be found by finding the middle of the x-coordinates and the middle of the y coordinates
- The coordinates of the midpoint will be

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

- This is given in the formula booklet under the prior learning section at the beginning

How do Ifind the distance between two points?

Exam Papers Practice

- The distance between two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be found using the formula

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

- This is given in the formula booklet in the priorlearningsection at the beginning
- Pythagoras'Theorem $a^{2}=b^{2}+c^{2}$ is used to find the length of a line between two coordinates
- If the coordinates are labelled A and B then the line segment between them is written with the notation [AB]

How do I find the gradient of the line between two points?

- The gradient of a line between two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be found using the formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- This is given in the formula booklet undersection 2.1 Gradient formula
- This is usually known as $m=\frac{\text { rise }}{\text { run }}$

Worked example

Point A has coordinates $(3,-4)$ and point B has coordinates $(-5,2)$.
i) Calculate the distance of the line segment $A B$.

$$
\begin{array}{ccc}
A:(3,-4) & B:(-5,2) \\
x_{1} & 4 & y_{1} \\
x_{2} & y_{2}
\end{array}
$$

Formula for distance between two points:

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

sub coordinates for A and B into the formula:

$$
\begin{aligned}
& d= \sqrt{(3-(-5))^{2}+(-4-2)^{2}} \\
&= \sqrt{8^{2}+(-6)^{2}}=\sqrt{100} \\
& d=10 \text { units }
\end{aligned}
$$

ii)

Find the gradient of the line connecting points A and B.

© 2024 Exam Paperformula for gradient of a line segment:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

sub coordinates for A and B into the formula:

$$
\begin{gathered}
m=\frac{2--4}{-5-3}=\frac{6}{-8}=-\frac{3}{4} \\
m=-\frac{3}{4}
\end{gathered}
$$

iii) Find the mid po int of $[A B]$.

Exam Papers Practice

$$
\begin{array}{cccc}
A:(3,-4) & B:(-5,2) \\
x_{1} & 4 & y_{1} & x_{2}
\end{array}
$$

Formula for the midpoint of two coordinates:

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Sub values in:

$$
\text { Midpoint }=\left(\frac{3+(-5)}{2}, \frac{-4+2}{2}\right)=(-1,-1)
$$

Exam Papers Practice
© 2024 Exam Papers Practice

3.1.2 Radian Measure

Radian Me asure

What are radians?

- Radians are an alternative to degrees formeasuring angles
- 1 radian is the angle in a sector of radius 1 and arc length 1
- A circle with radius lis called a unit circle
- Radians are normally quoted in terms of π
- 2π radians $=360^{\circ}$
- π radians $=180^{\circ}$
- The symbol for radians is ${ }^{\text {c }}$ but it is more usual to see rad
- Often, when π is involved, no symbol is given as it is obvious it is in radians
- Whilst it is okay to omit the symbol for radians, you should neveromit the symbol for degrees
- In the exam you should use radians unless otherwise indicated

How do lconvert between radians and degrees?

- Use $\pi^{\mathrm{c}}=180^{\circ}$ to convert between radians and degrees
- To convert from radians to degrees multiply by $\frac{180}{\pi}$
- To convert from degrees to radians multiply by $\frac{\pi}{180}$
- Some of the common conversions are:
- $2 \pi^{c}=360^{\circ}$
- $\pi^{c}=180^{\circ}$
- $\frac{\pi}{2}^{c}=90^{\circ}$
- ${\frac{\pi}{}{ }^{c}}^{c}=60^{\circ}$
- $\frac{\pi}{4}^{c}=45^{\circ}$
- $\frac{\pi}{6}^{c}=30^{\circ}$
- It is a good idea to remembersome of these and use them to work out otherconversions
- Your GDC will be able to work with both radians and degrees

Copyright

© 2024 Exam Papers Practice

- ExamTip

- Sometimes an exam question will specify whetheryou should be using degrees orradians and sometimes it will not, if it doesn't it is expected that you will work in radians
- If the question involves π then working in radians is useful as there will likely be opportunities where you can cancel out π
- Make sure that your calculator is in the correct mode for the type of angle you are working with

Worked example

i) Convert 43.8° to radians.
$73 \pi \times \pi^{c}$

$$
\left(\pi^{c}=180^{\circ}\right)
$$

ii) Convert $\frac{5 \pi}{4}$ to degrees.

$$
\frac{5 \pi}{4}=225^{\circ}
$$

3.1.3 Arcs \& Sectors

Length of an Arc

What is an arc?

- An arc is a part of the circumference of a circle
- It is easiest to think of it as the crust of a single slice of pizza
- The length of an arc depends of the size of the angle at the centre of the circle
- If the angle at the centre is less than 180° then the arc is known as a minor arc
- This could be considered as the crust of a single slice of pizza
- If the angle at the centre is more than 180° then the arc is known as a major arc
- This could be considered as the crust of the remaining pizza after a slice has been taken away

Howdo lfind the length of an arc?

- The length of an arc is simply a fraction of the circumference of a circle
- The fraction can be found by dividing the angle at the centre by 360°
- The formula for the length, l, of an arc is

$$
I=\frac{\theta}{360} \times 2 \pi r
$$

- Where θ is the angle measured in degrees
- r is the radius
- This is in the formula booklet for radian measure only
- Remember 2π radians $=360^{\circ}$

- Exam Tip

- Make sure that you read the question carefully to determine if you need to calculate the arc length of a sector, the perimeter orsomething else that incorporates the arc length!

Worked example

A circular pizza has had a slice cut from it, the angle of the slice that was cut was 38°. The radius of the pizza is 12 cm . Find
i) the length of the outside crust of the slice of pizza (the minor arc),

A diagram will help:
formula for the length of an arc:

$$
l=\frac{\theta}{360} \times 2 \pi r
$$

Substitute:

l	$=\frac{38}{360} \times 2 \pi$ (12)
	$=\frac{38 \pi}{15}=7.9587 \ldots \mathrm{~cm}$
length of crust	$=7.96 \mathrm{~cm}$ (3s.f)

ii) the perimeter of the remaining pizza.

A diagram will help:

formula for the length of an arc:

$$
l=\frac{\theta}{360} \times 2 \pi r
$$

Substitute:

$$
\begin{aligned}
l & =\frac{322}{360} \times 2 \pi(12) \\
& =\frac{322}{15} \pi \leftarrow \text { length of major arc }
\end{aligned}
$$

Find perimeter:

$$
\begin{aligned}
P & =\text { major arc }+ \text { radius + radius } \\
& =\frac{322 \pi}{15}+12+12=91.4395 \ldots \mathrm{~cm}
\end{aligned}
$$

Perimeter $=91.4 \mathrm{~cm}$ (3s.f)

Area of a Sector

What is a sector?

- A sector is a part of a circle enclosed bytwo radii (radiuses) and an arc
- It is easier to think of this as the shape of a single slice of pizza
- The area of a sectordepends of the size of the angle at the centre of the sector
- If the angle at the centre is less than 180° then the sectoris known as a minor sector
- This could be considered as the shape of a single slice of pizza
- If the angle at the centre is more than 180° then the sector is known as a major sector
- This could be considered as the shape of the remaining pizza after a slice has beentaken away

How do Ifind the area of a sector?

- The area of a sector is simplya fraction of the area of the whole circle
- The fraction can be found bydividing the angle at the centre by 360°
- The formula forthe area, A, of a sectoris

$$
A=\frac{\theta}{360} \times \pi r^{2}
$$

- Where θ is the angle measured in degrees
- r is the radius
- This is in the formula booklet for radian measure only
- Remember 2π radians $=360^{\circ}$

Copyright
© 2024 Exam Papers Practice

Worked example

Jamie has divided a circle of radius 50 cm into two sectors; a minor sector of angle 100° and a major sector of angle 260°. He is going to paint the minor sector blue and the major sector yellow. Find
i) the area Jamie will paint blue,

Start with a diagram:

Formula for the area of a sector:

$$
A=\frac{\theta}{360^{\circ}} \times \pi r^{2}
$$

Substitute: $A=\frac{100}{360} \times \pi \times 50^{2}$

$$
=\frac{6250}{9} \pi
$$

$$
=2181.66 \ldots \mathrm{~cm}^{2}
$$

Blue area $=2180 \mathrm{~cm}^{2}$ (3sf)

ii) the area Jamie will paint yellow.
(c) 2024 Exam Papers Start with a diagram:

Formula for the area of a sector:

$$
A=\frac{\theta}{360^{\circ}} \times \pi r^{2}
$$

Substitute: $A=\frac{260}{360} \times \pi \times 50^{2}$

$$
=\frac{16250}{9} \pi
$$

$$
=5672.32 \ldots \mathrm{~cm}^{2}
$$

Yellow area $=5670 \mathrm{~cm}^{2}$ (3sf)

Arcs \& Sectors Using Radians

How do luse radians to find the length of an arc?

- As the radian measure for a fullturn is 2π, the fraction of the circle becomes $\frac{\theta}{2 \pi}$
- Working in radians, the formula for the length of an arc will become

$$
I=\frac{\theta}{2 \pi} \times 2 \pi r
$$

- Simplifying, the formula for the length, l, of an arc is

$$
l=r \theta
$$

- θ is the angle measured in radians
- r is the radius
- This is given in the formula booklet, you do not need to remember it

How do luse radians to find the area of a sector?

- As the radian measure for a full turn is 2π, the fraction of the circle becomes $\frac{\theta}{2 \pi}$
- Working in radians, the formula for the area of a sector will become

$$
A=\frac{\theta}{2 \pi} \times \pi r^{2}
$$

- Simplifying, the formula forthe area, A, of a sector is

$$
A=\frac{1}{2} r^{2} \theta
$$

Copyright

© 2024 Exam Papers Practice

- θ is the angle measured in radians
- r is the radius
- This is given in the formula booklet, youdo not need to remember it

Worked example
A slice of cake forms a sector of a circle with an angle of $\frac{\pi}{6}$ radians and radius of 7 cm . Find the area of the surface of the slice of cake and its perimeter.

Draw a diagram:

7 cm
Area of a sector: $A=\frac{1}{2} r^{2} \theta$
Substitute: $r=7, \theta=\frac{\pi}{6}$

$$
\begin{aligned}
& A=\frac{1}{2}(7)^{2}\left(\frac{\pi}{6}\right)=\frac{49 \pi}{12} \\
& \text { Area }=12.8 \mathrm{~cm}^{2}(3 \text { s.f. })
\end{aligned}
$$

Perimeter $=$ arc Length +2 (radius)
Copyright
© 2224 Exam Papa Length of an arc: $l=r \theta$

$$
P=7\left(\frac{\pi}{6}\right)+2(7)
$$

$$
\text { Perimeter }=17.7 \mathrm{~cm}(3 \mathrm{~s} . f .)
$$

