A Level Physics CIE

21. Alternating Currents

CONTENTS

Properties and Uses of Alternating Current
Alternating Current \& Voltage
Root-Mean-Square Current \& Voltage
Mean Power
Rectification
Smoothing

EXAM PAPERS PRACTICE

21.1 Properties and Uses of Alternating Current

21.1.1 Alternating Current \& Voltage

Properties of Alternating Current \& Voltage

- An alternating current (a.c) is defined as:

A current which periodically varies from positive to negative and changes its magnitude continuously with time

- This means the direction of an alternating current varies every half cycle
- The variation of current, or p.d., with time can be described as a sine curve ie. sinusoidal
- Therefore, the electrons in a wire carrying a.c. move back and forth with simple harmonic motion
- As with SHM, the relationship between time period T and frequency f of an alternating current is given by:

$$
\mathrm{T}=\frac{1}{f}
$$

- Peak current $\left(I_{0}\right)$, or peak voltage $\left(V_{0}\right)$, is defined as:

The maximum value of the alternating current or voltage

- Peak current, or voltage, can be determined from the amplitude of the graph

Graph of alternating current against time with a time period of 20 ms and peak current of 2 A

- Mains electricity is supplied as alternating current
- Power stations produce alternating current
- This is the type of current supplied when devices are plugged into sockets

? Worked Example

The variation with time t of the output voltage V of an alternating voltage supply is shown in the graph below.

Use the graph to calculate the frequency of the supply.

Step 1:

Write down the period-frequency relation

$$
\mathrm{f}=\frac{1}{T}
$$

Step 2:

Calculate the time period from the graph

- The time period is the time taken for one complete cycle
- From the graph, this is equal to 0.2 ms
- Therefore, the time period, $\mathrm{T}=0.2 \mathrm{~ms}=\mathbf{0 . 2} \times \mathbf{1 0}^{\mathbf{- 3}} \mathbf{s}$

Step 3:

Substitute into frequency equation

$$
\mathrm{f}=\frac{1}{0.2 \times 10^{-3}}=5000 \mathrm{~Hz}=5 \mathbf{~ k H z}
$$

Exam Tip
Remember to double check the units on the alternating current and voltage graphs. These are often shown in the range of milli-seconds (ms) instead of seconds (s) on the x axis.

EXAM PAPERS PRACTICE

Using Sinusoidal Representations

- The equation representing alternating current which gives the value of the current I at any time t is:

$$
I=I_{0} \sin (\omega t)
$$

- Where:
- $\mathrm{I}=$ current (A)
- $\mathrm{I}_{0}=$ peak current (A)
- $\omega=$ angular frequency of the supply ($\mathrm{rad} \mathrm{s}^{-1}$)
- $\mathrm{t}=$ time (s)
- Note: this a sine function since the alternative current graph is sinusoidal
- A similar equation can be used for representing alternating voltage:

$$
V=V_{0} \sin (\omega t)
$$

- Where:
- $\mathrm{V}=$ voltage (V)
- $\mathrm{V}_{0}=$ peak voltage (V)
- Recall the relation the equation for angular frequency ω :

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

Worked Example
An alternating current I varies with time t as shown in the graph below.

Using the graph and the equation for alternating current, calculate the value of the current at a time 0.48 s .

Step 1: \quad Write out the equation for alternating current

$$
I=I_{0} \sin (\omega t)
$$

for more help, please visit www.exampaperspractice.co.uk

Step 2: Write out the equation for angular frequency

$$
\omega=\frac{2 \pi}{T}
$$

Step 3: Measure the time period T and peak current I_{0} from the graph The time period is the time taken for one full cycle, $\mathrm{T}=0.10 \mathrm{~s}$ Peak current (amplitude), $I_{0}=17 \mathrm{~A}$

Step 4: \quad Substitute values into alternating current equation at time t Using the time given in the question, $\mathrm{t}=0.48 \mathrm{~s}$

$$
\begin{gathered}
I=I_{0} \sin (\omega t)=I_{0} \sin \left(\frac{2 \pi t}{T}\right) \\
I=17 \sin \left(\frac{2 \pi(0.48)}{0.1}\right)=-16.168=-16 \mathrm{~A}(2 \mathrm{s.f})
\end{gathered}
$$

Exam Tip

Remember to check that your calculator is in radians mode when using any of these equations. This is because angular frequency ω is measured in rad s^{-1}
EXAM PAPERS PRACTICE

21.1.2 Root-Mean-Square Current \& Voltage

Root-Mean-Square Current \& Voltage

- Root-mean-square (r.m.s) values of current, or voltage, are a useful way of comparing a.c current, or voltage, to its equivalent direct current, or voltage
- The r.m.s values represent the d.c current, or voltage, values that will produce the same heating effect, or power dissipation, as the alternating current, or voltage
- The r.m.s value of an alternating current is defined as:

The value of a constant current that produces the same power in a resistor as the alternating current

- The r.m.s current $I_{\text {r.m.s }}$ is defined by the equation:

$$
\mathrm{I}_{\mathrm{rm} . \mathrm{s}}=\frac{I_{0}}{\sqrt{2}}
$$

- So, r.m.s current is equal to $0.707 \times \mathrm{I}_{0}$, which is about 70% of the peak current I_{0}
- The r.m.s value of an alternating voltage is defined as:

The value of a constant voltage that produces the same power in a resistor as the alternating voltage

- The r.m.s voltage $\mathrm{V}_{\text {r.m.s }}$ is defined by the equation:

$$
\mathrm{V}_{\mathrm{t} . \mathrm{s} \mathrm{~s}}=\frac{V_{0}}{\sqrt{2}}
$$

- Where:

- $\mathrm{V}_{0}=$ peak voltage (V)
- The r.m.s value is therefore defined as:

The steady direct current, or voltage, that delivers the same average power in a resistor as the alternating current, or voltage

- A resistive load is any electrical component with resistance eg. a lamp

$V_{\text {r.m.s }}$ and peak voltage. The r.m.s voltage is about 70% of the peak voltage

? Worked Example

An alternating current is I is represented by the equation

$$
I=410 \sin (100 \pi t)
$$

where I is measured in amperes and t is in seconds.For this alternating current, determine the r.m.s current.

Step 1: Write out the equation for r.m.s current

$$
I_{\mathrm{r} . \mathrm{m} . \mathrm{s}}=\frac{I_{0}}{\sqrt{2}}
$$

Step 2: Determine the peak voltage I_{0}

- The alternating current equation is in the form: $\mathbf{I}=I_{0} \boldsymbol{\operatorname { s i n }}\left(\omega^{*}\right)$
- Comparing this to $\mathrm{I}=410 \sin (100 \pi t)$ means the peak current is $\mathrm{I}_{0}=$ 410 A

Step 3: Substitute into the $I_{\text {r.m.s }}$ equation

$$
I_{\text {r.m.s }}=\frac{410}{\sqrt{2}}=289.91=290 \mathrm{~A}(2 \text { s.f. })
$$

21.1.3 Mean Power

Mean Power

- In mains electricity, current and voltage are varying all the time
- This also means the power varies constantly, recall the equations for power:

$$
\mathrm{P}=\mathrm{IV}=\mathrm{I}^{2} \mathrm{R}=\frac{V^{2}}{R}
$$

- Where:
- I = direct current (A)
- $\mathrm{V}=$ direct voltage (A)
- $\mathrm{R}=$ resistance (Ω)
- The r.m.s values means equations used for direct current and voltage can now be applied to alternating current and voltage
- These are also used to determine an average current or voltage for alternating supplies
- Recall the equation for peak current:

$$
I_{0}=\sqrt{2} I_{\text {r.m.s }}
$$

- Therefore, the peak (maximum) power is related to the mean (average) power by:

$$
\begin{gathered}
P_{\text {mean }}=I_{\text {r.m.s }} R \\
P_{\text {peak }}=I_{0}^{2} R=\left(\sqrt{2} I_{\text {r.m.s }}\right)^{2} R=2\left(I_{\text {r.m.s }}\right)^{2} R=2 P_{\text {mean }} \\
P_{\text {peak }} \\
2
\end{gathered} P_{\text {mean }}=\frac{\frac{2}{2}}{}=
$$

- Therefore, it can be concluded that:

The mean power in a resistive load is half the maximum power for a sinusoidal alternating current or voltage

Mean power is exactly half the maximum power

?

Worked Example

An alternating voltage supplied across a resistor of 40Ω has a peak voltage V_{o} of 240 V .Calculate the mean power of this supply.

Step 1: Write down the known quantities

$$
\begin{gathered}
\text { Resistance, } R=40 \Omega \\
\text { Peak voltage, } V_{o}=240 \mathrm{~V}
\end{gathered}
$$

Step 2: Write out the equation for the peak power and calculate

$$
\begin{aligned}
& \text { Peak power, } \mathrm{P}=\frac{V_{0}^{2}}{R} \\
& \mathrm{P}=\frac{(240)^{2}}{40}=1440 \mathrm{~W}
\end{aligned}
$$

Step 3: Calculate the mean power

- The mean power is half of the maximum (peak) power

$$
\text { Mean power }=1440 / 2=720 \mathrm{~W}
$$

21.1.4 Rectification

Rectification Graphs

- Rectification is defined as:

The process of converting alternating current and voltage into direct current and voltage

- Rectification is used in electronic equipment which requires a direct current
- For example, mains voltage must be rectified from the alternating voltage produced at power stations
- There are two types of rectification:
- Half-wave rectification
- Full-wave rectification
- For half-wave rectification:
- The graph of the output voltage $V_{\text {out }}$ against time is a sine curve with the positive cycles and a flat line ($V_{\text {out }}=0$) on the negative cycle
- This is because the diode only conducts in the positive direction
- For full-wave rectification:
- The graph of the output voltage $V_{\text {out }}$ against time is a sine curve where the positive cycles and the negative cycles are both curved 'bumps'

The difference between the graphs of full-wave and half-wave rectification

EXAM PAPERS PRACTICE

Half-Wave Rectification

- Half-wave rectification consists of a single diode
- An alternating input voltage is connected to a circuit with a load resistor and diode in series
- The diode will only conduct during the positive cycles of the input alternating voltage,
- Hence there is only current in the load resistor during these positive cycles
- The output voltage $V_{\text {out }}$ across the resistor will fluctuate against against time in the same way as the input alternating voltage except there are no negative cycles

Half-wave rectification requires a single diode and the graph is represented by only the positive cycles

- This type of rectification means half of the time the voltage is zero
- So, the power available from a half-wave rectified supply is reduced

Full-Wave Rectification

- Full-wave rectification requires a bridge rectifier circuit
- This consists of four diodes connected across an input alternating voltage supply
- The output voltage $V_{\text {out }}$ is taken across a load resistor
- During the positive cycles of the input voltage, one terminal if the voltage supply is positive and the other negative
- Two diodes opposite each other that are in forward bias will conduct
- The other two in reverse bias will not conduct
- A current will flow in the load resistor with the positive terminal at the top of the resistor
- During the negative cycles of the input voltage, the positive and negative terminals of the input alternating voltage supply will swap
- The two diodes that were forward bias will now be in reverse bias and not conduct
- The other two in reverse bias will now be in forward bias and will conduct
- The current in the load resistor will still flow in the same direction as before
A.C. SUPPLY \sim

When A is positive and B is negative, diodes 2 and 3 will conduct and 1 and 4 will not. When A is negative and B is positive, diodes 1 and 4 will conduct and diodes 2 and 3 will not. The current in the load resistor R will flow downwards

- In both the positive and negative cycles, the current in the load resistor is the same
- Each diode pair is the same as in half-wave rectification
- Since there are two pairs, this equates to full-wave rectification overall
- The main advantage of full-wave rectification compared to half-wave rectification is that there is more power available
- Therefore, a greater power is supplied on every half cycle

W Worked Example

A bridge rectifier consists of four ideal diodes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D as connected in the figure shown below

An alternating supply is applied between the terminal X and Y
State which diodes are conducting when terminal X of the supply is positive

- Draw path ot the current direction with diodes in torwara bias
- Remember that conventional current flow is from positive to negative and only travels through the paths with diodes in forward bias

Therefore, the answer is: diodes A and C

21.1.5 Smoothing

Smoothing

- In rectification, to produce a steady direct current or voltage from an alternating current or voltage, a smoothing capacitor is necessary
- Smoothing is defined as:

The reduction in the variation of the output voltage or current

- This works in the following ways:
- A single capacitor with capacitance C is connected in parallel with a load resistor of resistance R
- The capacitor charges up from the input voltage and maintains the voltage at a high level
- As it discharges gradually through the resistor when the rectified voltage drops but the voltage then rises again and the capacitor charges up again

A smoothing capacitor connected in parallel with the load resistor. The capacitor charges as the output voltage increases and discharges as it decreases

- The resulting graph of a smoothed output voltage $V_{\text {out }}$ and output current against time is a 'ripple' shape

A smooth, rectified current graph creates a 'rippling' shape against time

- The amount of smoothing is controlled by the capacitance C of the capacitor and the resistance R of the load resistor
- The less the rippling effect, the smoother the rectified current and voltage output
- The slower the capacitor discharges, the more the smoothing that occurs ie. smaller ripples
- This can be achieved by using
- A capacitor with greater capacitance C
- A resistance with larger resistor R
- Recall that the product RC is the time constant τ of a resistor
- This means that the time constant of the capacitor must be greater than the time interval between the adjacent peaks of the output signal

?
 Worked Example

The graph below shows the output voltage from a half-wave rectifier. The load resistor has a resistance of $2.6 \mathrm{k} \Omega$. A student wishes to smooth the output voltage by placing a capacitor in parallel across the load resistor

Suggest if a capacitor of 60 pF or $800 \mu \mathrm{~F}$ would be suitable for this task

Step 1:

Calculate the time constant with the 60 pF capacitor

$$
T=R C=\left(2.6 \times 10^{3}\right) \times\left(60 \times 10^{-12}\right)=1.56 \times 10^{-7} \mathrm{~s}=156 \mathrm{~ns}
$$

Step 2:
Compare time constant of 60 pF capacitor with interval between adjacent peaks of the output signal

- The time interval between adjacent peaks is 80 ms
- The time constant of 156 ns is too small and the 60 pF capacitor will discharge far too quickly
- There would be no smoothing of the output voltages
- Therefore, the 60 pF capacitor is not suitable

Step 3:

Calculate the time constant with the $800 \mu \mathrm{~F}$ capacitor

$$
T=R C=\left(2.6 \times 10^{3}\right) \times\left(800 \times 10^{-6}\right)=2.08 \mathrm{~s}
$$

Step 4:

Compare time constant of 60 pF capacitor with interval between adjacent peaks of the output signal

- The time constant of 2.08 s is much larger than 80 ms
- The capacitor will not discharge completely between the positive cycles of the half-wave rectified signal
- Therefore, the $\mathbf{8 0 0} \boldsymbol{\mu}$ F capacitor would be suitable for the smoothing task

EXAM PAPERS PRACTICE

