

A Level Physics CIE

21. Alternating Currents

CONTENTS

Properties and Uses of Alternating Current Alternating Current & Voltage Root-Mean-Square Current & Voltage Mean Power Rectification Smoothing

for more help, please visit www.exampaperspractice.co.uk

21.1 Properties and Uses of Alternating Current

21.1.1 Alternating Current & Voltage

Properties of Alternating Current & Voltage

• An alternating current (a.c) is defined as:

A current which periodically varies from positive to negative and changes its magnitude continuously with time

- This means the direction of an alternating current varies every half cycle
- The variation of current, or p.d., with time can be described as a sine curve ie. **sinusoidal**
 - Therefore, the electrons in a wire carrying a.c. move back and forth with simple harmonic motion
- As with SHM, the relationship between time period T and frequency f of an alternating current is given by:

• Peak current (I_0) , or peak voltage (V_0) , is defined as:

The maximum value of the alternating current or voltage

• Peak current, or voltage, can be determined from the amplitude of the graph

Graph of alternating current against time with a time period of 20 ms and peak current of 2 A

- Mains electricity is supplied as alternating current
 - ° Power stations produce alternating current
 - ° This is the type of current supplied when devices are plugged into sockets

- From the graph, this is equal to 0.2 ms
- Therefore, the time period, $T = 0.2 \text{ ms} = 0.2 \times 10^{-3} \text{ s}$

Step 3:

Substitute into frequency equation

$$f = \frac{1}{0.2 \times 10^{-3}} = 5000 \text{ Hz} = 5 \text{ kHz}$$

\bigcirc

Exam Tip

Remember to double check the units on the alternating current and voltage graphs. These are often shown in the range of milli-seconds (ms) instead of seconds (s) on the x axis.

Using Sinusoidal Representations

• The equation representing alternating current which gives the value of the current *I* at any time *t* is:

 $I = I_0 sin(\omega t)$

- Where:
 - \circ I = current (A)
 - $\circ I_0 = peak current (A)$
 - ° ω = angular frequency of the supply (rad s⁻¹)
 - \circ t = time (s)
- Note: this a sine function since the alternative current graph is sinusoidal
- A similar equation can be used for representing alternating voltage:

- Where:
 - \circ V = voltage (V)
 - $\circ V_0 = peak voltage (V)$
- Recall the relation the equation for angular frequency ω :

Step 1:

Write out the equation for alternating current

 $I = I_0 sin(\omega t)$

Step 2: Write out the equation for angular frequency

$$\omega = \frac{2\pi}{T}$$

Step 3: Measure the time period T and peak current I_0 from the graph

The time period is the time taken for one full cycle, T = 0.10 s

Peak current (amplitude), $I_0 = 17 A$

Step 4: Substitute values into alternating current equation at time t

Using the time given in the question, t = 0.48 s

$$I = I_0 \sin(\omega t) = I_0 \sin\left(\frac{2\pi t}{T}\right)$$
$$I = 17\sin\left(\frac{2\pi (0.48)}{0.1}\right) = -16.168 = -16 \text{ A} (2 \text{ s.f})$$

Exam Tip

Remember to check that your calculator is in <code>radians</code> mode when using any of these equations. This is because angular frequency ω is measured in rad s^{-1}

21.1.2 Root-Mean-Square Current & Voltage

Root-Mean-Square Current & Voltage

- Root-mean-square (r.m.s) values of current, or voltage, are a useful way of **comparing** a.c current, or voltage, to its equivalent direct current, or voltage
- The r.m.s values represent the d.c current, or voltage, values that will produce the same **heating effect**, or power dissipation, as the alternating current, or voltage
- The r.m.s value of an alternating current is defined as:

The value of a constant current that produces the same power in a resistor as the alternating current

• The r.m.s current Ir.m.s is defined by the equation:

$$I_{\rm r.m.s} = \frac{I_0}{\sqrt{2}}$$

- * So, r.m.s current is equal to 0.707 imes I₀, which is about 70% of the peak current I₀
- The r.m.s value of an alternating voltage is defined as:

The value of a constant voltage that produces the same power in a resistor as the alternating voltage

• The r.m.s voltage Vr.m.s is defined by the equation:

- Where:
 - Io = peak current (A) AM PAPERS PRACTICE
 - \circ V₀ = peak voltage (V)
- * The r.m.s value is therefore defined as:

The steady direct current, or voltage, that delivers the same average power in a resistor as the alternating current, or voltage

• A resistive load is any electrical component with resistance eg. a lamp

V_{r.m.s} and peak voltage. The r.m.s voltage is about 70% of the peak voltage

Step 2: Determine the peak voltage I_0

- The alternating current equation is in the form: $I = I_0 \sin(\omega \theta)$
- Comparing this to I = 410 sin(100 π t) means the peak current is I₀ = 410 A

Step 3: Substitute into the Ir.m.s equation

$$I_{r.m.s} = \frac{410}{\sqrt{2}} = 289.91 = 290 \text{ A} (2 \text{ s.f.})$$

21.1.3 Mean Power

Mean Power

- In mains electricity, current and voltage are varying all the time
- This also means the **power** varies constantly, recall the equations for power:

$$P = IV = I^2 R = \frac{V^2}{R}$$

• Where:

 $^{\circ}$ I = direct current (A)

 \circ V = direct voltage (A)

° $R = resistance (\Omega)$

- The r.m.s values means equations used for direct current and voltage can now be applied to alternating current and voltage
- These are also used to determine an average current or voltage for alternating supplies
- Recall the equation for peak current:

$$I_0 = \sqrt{2} I_{r.m.s}$$

• Therefore, the peak (maximum) power is related to the mean (average) power by:

$$P_{\text{mean}} = I_{\text{r.m.s}}R$$

$$P_{\text{peak}} = I_0^2 R = (\sqrt{2} I_{\text{r.m.s}})^2 R = 2(I_{\text{r.m.s}})^2 R = 2P_{\text{mean}}$$

$$P_{\text{peak}}$$

$$P_{\text{mean}} = \frac{P_{\text{peak}}}{2}RS$$

* Therefore, it can be concluded that:

The mean power in a resistive load is half the maximum power for a sinusoidal alternating current or voltage

Mean power is exactly half the maximum power

Worked Example

An alternating voltage supplied across a resistor of 40 Ω has a peak voltage V_0 of 240 V.Calculate the mean power of this supply.

Step 1: Write down the known quantities

Resistance,
$$R = 40 \Omega$$

Peak voltage, $V_0 = 240$ V

Step 2: Write out the equation for the peak power and calculate

Peak power, P =
$$\frac{V_0^2}{R}$$

$$P = \frac{(240)^2}{40} = 1440 \text{ W}$$

Step 3: Calculate the mean power

The mean power is **half** of the maximum (peak) power

Mean power = 1440 / 2 = 720 W

EXAM PAPERS PRACTICE

21.1.4 Rectification

Rectification Graphs

* Rectification is defined as:

The process of converting alternating current and voltage into direct current and voltage

- · Rectification is used in electronic equipment which requires a direct current
 - ° For example, mains voltage must be rectified from the alternating voltage produced at power stations
- There are two types of rectification:
 - ° Half-wave rectification
 - ° Full-wave rectification
- For half-wave rectification:
 - \circ The graph of the output voltage V_{out} against time is a sine curve with the positive cycles and a flat line ($V_{out} = 0$) on the negative cycle
 - $^{\circ}\,$ This is because the diode only conducts in the positive direction
- For full-wave rectification:
 - The graph of the output voltage V_{out} against time is a sine curve where the positive cycles and the negative cycles are both curved 'bumps'

The difference between the graphs of full-wave and half-wave rectification

Half-Wave Rectification

- * Half-wave rectification consists of a single diode
 - $^{\circ}\,$ An alternating input voltage is connected to a circuit with a load resistor and diode in series
- The diode will only conduct during the positive cycles of the input alternating voltage,
 - $^{\circ}\,$ Hence there is only current in the load resistor during these positive cycles
- The output voltage V_{out} across the resistor will fluctuate against against time in the same way as the input alternating voltage **except** there are no negative cycles

Half-wave rectification requires a single diode and the graph is represented by only the positive cycles

- This type of rectification means half of the time the voltage is zero
- So, the power available from a half-wave rectified supply is reduced

Full-Wave Rectification

- Full-wave rectification requires a bridge rectifier circuit
 - This consists of four diodes connected across an input alternating voltage supply
- The output voltage Vout is taken across a load resistor
- During the **positive** cycles of the input voltage, one terminal if the voltage supply is positive and the other negative
 - $^{\circ}$ Two diodes opposite each other that are in forward bias will conduct
 - $^{\circ}\,$ The other two in reverse bias will not conduct
 - $^{\circ}\,$ A current will flow in the load resistor with the positive terminal at the top of the resistor
- During the **negative** cycles of the input voltage, the positive and negative terminals of the input alternating voltage supply will swap
 - ° The two diodes that were forward bias will now be in reverse bias and not conduct
 - $^{\circ}\,$ The other two in reverse bias will now be in forward bias and will conduct
 - $^{\circ}$ The current in the load resistor will still flow in the same direction as before

- In both the positive and negative cycles, the current in the load resistor is the same
- Each diode pair is the same as in half-wave rectification
 Since there are two pairs, this equates to full-wave rectification overall
- The main advantage of full-wave rectification compared to half-wave rectification is that there is **more power** available
 - ° Therefore, a greater power is supplied on every half cycle

for more help, please visit www.exampaperspractice.co.uk

21.1.5 Smoothing

Smoothing

- In rectification, to produce a steady direct current or voltage from an alternating current or voltage, a **smoothing capacitor** is necessary
- Smoothing is defined as:

The reduction in the variation of the output voltage or current

- This works in the following ways:
 - $^{\circ}\,$ A single capacitor with capacitance C is connected in parallel with a load resistor of resistance R
 - ° The capacitor charges up from the input voltage and maintains the voltage at a high level
 - As it discharges gradually through the resistor when the rectified voltage drops but the voltage then rises again and the capacitor charges up again

- A smoothing capacitor connected in parallel with the load resistor. The capacitor charges as the output voltage increases and discharges as it decreases
- The resulting graph of a smoothed output voltage V_{out} and output current against time is a 'ripple' shape

A smooth, rectified current graph creates a 'rippling' shape against time

- The amount of smoothing is controlled by the capacitance C of the capacitor and the resistance R of the load resistor
 - The less the rippling effect, the smoother the rectified current and voltage output
- The slower the capacitor discharges, the more the smoothing that occurs ie. smaller ripples
- This can be achieved by using:
 - $^\circ$ A capacitor with greater capacitance C
 - $^{\circ}$ A resistance with larger resistor R
- Recall that the product RC is the time constant τ of a resistor
- This means that the time constant of the capacitor must be greater than the time interval between the adjacent peaks of the output signal

Worked Example

The graph below shows the output voltage from a half-wave rectifier. The load resistor has a resistance of 2.6 k Ω . A student wishes to smooth the output voltage by placing a capacitor in parallel across the load resistor

Suggest if a capacitor of 60 pF or 800 μF would be suitable for this task

Step 1:

Calculate the time constant with the 60 pF capacitor

$$T = RC = (2.6 \times 10^3) \times (60 \times 10^{-12}) = 1.56 \times 10^{-7} s = 156 ns$$

Step 2:

Compare time constant of 60 pF capacitor with interval between adjacent peaks of the output signal

- ° The time interval between adjacent peaks is 80 ms
- ° The time constant of 156 ns is too small and the 60 pF capacitor will discharge far too quickly
- $^{\circ}\,$ There would be no smoothing of the output voltages
- $^\circ\,$ Therefore, the 60 pF capacitor is not suitable

Step 3:

Calculate the time constant with the 800 μ F capacitor

$T = RC = (2.6 \times 10^3) \times (800 \times 10^{-6}) = 2.08 s$

Step 4:

Compare time constant of 60 pF capacitor with interval between adjacent peaks of the output signal

- $^\circ\,$ The time constant of 2.08 s is much larger than 80 ms
- The capacitor will not discharge completely between the positive cycles of the half-wave rectified signal
- $^\circ\,$ Therefore, the 800 μF capacitor would be suitable for the smoothing task

