

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International Advanced Level in Physics (WPH01) Paper 01 Physics on the Go

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 46650_MS* All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Mark scheme notes

Underlying principle

The mark scheme will clearly indicate the concept that is being rewarded, backed up by examples. It is not a set of model answers.

1. Mark scheme format

- 1.1 You will not see 'wtte' (words to that effect). Alternative correct wording should be credited in every answer unless the MS has specified specific words that must be present. Such words will be indicated by underlining e.g. 'resonance'
- 1.2 Bold lower case will be used for emphasis e.g. '**and'** when two pieces of information are needed for 1 mark.
- 1.3 Round brackets () indicate words that are not essential e.g. "(hence) distance is increased".
- 1.4 Square brackets [] indicate advice to examiners or examples e.g. [Do not accept gravity] [ecf].

2. Unit error penalties

- 2.1 A separate mark is not usually given for a unit but a missing or incorrect unit will normally mean that the final calculation mark will not be awarded.
- 2.2 This does not apply in 'show that' questions or in any other question where the units to be used have been given, for example in a spreadsheet.
- 2.3 The mark will not be awarded for the same missing or incorrect unit only once within one clip in epen.
- 2.4 Occasionally, it may be decided not to insist on a unit e.g the candidate may be calculating the gradient of a graph, resulting in a unit that is not one that should be known and is complex.
- 2.5 The mark scheme will indicate if no unit error is to be applied by means of [no ue].

3. Significant figures

- 3.1 Use of too many significant figures in the theory questions will not be prevent a mark being awarded if the answer given rounds to the answer in the MS.
- 3.2 Too few significant figures will mean that the final mark cannot be awarded in 'show that' questions where one more significant figure than the value in the question is needed for the candidate to demonstrate the validity of the given answer.
- 3.3 The use of one significant figure might be inappropriate in the context of the question e.g. reading a value off a graph. If this is the case, there will be a clear indication in the MS.
- 3.4 The use of $g = 10 \text{ m s}^{-2}$ or 10 N kg⁻¹ instead of 9.81 m s⁻² or 9.81 N kg⁻¹ will mean that one mark will not be awarded. (but not more than once per clip). Accept 9.8 m s⁻² or 9.8 N kg⁻¹
- 3.5 In questions assessing practical skills, a specific number of significant figures will be required e.g. determining a constant from the gradient of a graph or in uncertainty calculations. The MS will clearly identify the number of significant figures required.

4. Calculations

- 4.1 Bald (i.e. no working shown) correct answers score full marks unless in a 'show that' question.
- 4.2 If a 'show that' question is worth 2 marks, then both marks will be available for a reverse working; if it is worth 3 marks then only 2 will be available.
- 4.3 **use** of the formula means that the candidate demonstrates substitution of physically correct values, although there may be conversion errors e.g. power of 10 error.
- 4.4 **recall** of the correct formula will be awarded when the formula is seen or implied by substitution.
- 4.5 The mark scheme will show a correctly worked answer for illustration only.

Question Number	Answer	Mark
Number		
1	В	1
2	В	1
3	С	1
4	Α	1
5	D	1
6	D	1
7	В	1
8	Α	1
9	D	1
10	D	1

Question	Answer		Mark
Number			
11	Use of $\sigma = \frac{F}{A}$ Use of cross sectional area = πr^2 and d = 2r Diameter = 1.6×10^{-3} m Example of calculation 500×10^6 Pa = $\frac{950 \text{ N}}{A}$ A = 1.9×10^{-6} m ² Diameter = $\sqrt{\frac{4 \times (1.9 \times 10^{-6} \text{ m}^2)}{\pi}}$	(1) (1) (1)	3
	Diameter = 0.00156 m		
	Total for Question 11		3

Question	Answer		Mark
Number			
12	Identifies what is wrong:		
	(Definition) should be for a change in stress		
	Or statement could be referring to any part of the plastic region		
	(accept beyond yield point or elastic limit but not limit of		
	proportionality)	(1)	
	What the yield point is:		
	The yield point is onset of plastic deformation		
	Or at/beyond the yield point there is little or no increase in		
	force/stress required to produce (this large extension)	(1)	2
	Total for Question 12		2

Question	Answer		Mark
Number			
13(a)	Copper is malleable	(1)	
	Can be hammered/beaten/bent into shape	(1)	2
13(b)	Steel is stiff		
	Or steel has a high Young modulus	(1)	
	Does not bend / deform	(1)	2
	(If neither MP is scored then strong Or high UTS scores MP1 only)		
	Total for Question 13		4

Question Number	Answer	Mark
14(a)(i)	Less compression / extension / Δx (must be comparative) (1) Driver / passenger less comfortable (1) Or driver / passenger feels the shock (1) Or car body not kept at the same level (1) Or the drive is more bumpy. (1)	
	(1)	2
14(a)(ii)	Straight line starting from (0,0) above the original line (1) Force New spring Original spring Extension	1
14(b)	Use of $F = k\Delta x$ (1) (Δ) $x = 0.316 - 0.205$ (= 0.111 m) stated or implied (allow -ve here only) (1) $k = 3.67 \times 10^4$ N m ⁻¹ (1) Example of calculation $\Delta x = 0.316$ m - 0.205 m = 0.111 m 4.07×10^3 N = $k \times 0.111$ m $k = 3.67 \times 10^4$ N m ⁻¹	
	Total for Question 14	6

Question Number	Answer		Mark
15(a)(i)	T_1 up $T_2 / W_f / m_f g$ down $W_s / m_s g$ down	(1) (1) (1)	3
	(Arrows must touch dot and be nearly vertical) (Accept a single line down with two labelled arrow heads. Accept a single arrow with T_2 +/and W_s .)		
	(-1 for each extra force) (subscripts needed for weight and tension)		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
15(a)(ii)	For the Spider : $T_1 = m_s g + m_f g$ Or $T_1 = m_s g + T_2$ (no ecf from (i))	(1)	
	For the fly : $m_{\rm f}g = T_2$	(1)	2
	(equations must be in terms of m and T as in the question)		
15(b)	Resultant force = $(m_{s} + m_{f})g - T_{1}$ (= 5.3 × 10 ⁻³ N) Use of $F = ma$ $a = 7.2 \text{ m s}^{-2}$ (Do not penalise negative values)	(1) (1) (1)	3
	Example of calculation $m_{s+}m_f = 7.3 \times 10^{-4} \text{ kg}$ $((7.3 \times 10^{-4} \text{ kg}) \times 9.81 \text{ N kg}^{-1}) - 1.9 \times 10^{-3} \text{ N} = (7.3 \times 10^{-4} \text{ kg})a$ $a = 7.2 \text{ m s}^{-2}$		
	Total for Question 15		8

Question	Answer		Mark
Number			
16(a)	Use of $W = mg$	(1)	
	Use of trig to find the vertical component of tension	(1)	
	T = 640 (N)	(1)	3
	Example of calculation $m_{\alpha} = 2T_{\alpha} i n_{\alpha}$		
	$mg = 2T\sin\theta$ (84 kg × 9.81 N kg ⁻¹) = 2 × T × sin 40°		
	T = 641 N		
*16(b)	(QWC – work must be clear and organised in a logical manner		
	using technical terminology where appropriate)		
		(1)	
	The idea that the horizontal force is the significant force.	(1)	
	$T_{\rm H} = T \cos \theta$	(1)	
	$T_{\rm H} = 1 \cos \theta$	(1)	
	$T = T_{\rm V} / \sin \theta$	(1)	
	$T_{\rm V}$ does not change Or $T_{\rm V} = (\frac{1}{2})$ weight	(1)	
	The horizontal component of tension/force decreases (as θ increases)		
	Or Tension decreases (as θ increases)	(1)	5
			0
	Total for Question 16		8

Question	Answer		Mark
Number	$U_{res} = f_{res} = (1 + 1)/(r^2 + i)/(r^2 +$	(1)	
17(a)(i)	Use of $s = ut + \frac{1}{2} at^2$ with $u = 0$ (or equivalent) Time = 6 x $\frac{1}{20} (z = 0.20 c)$	(1)	
	Time = $6 \times 1/20 = 0.30 \text{ s}$ s = 0.44 (m)	(1) (1)	3
	S = 0.44 (III)	(1)	3
	Example of calculation		
	$\frac{1}{s} = 0 + \frac{1}{2} \times 9.81 \text{ N kg}^{-1} \times (0.30 \text{ s})^2$		
	s = 0.44 m		
17(a)(ii)	Measured vertical distance = $5.7 \text{ cm} \pm 0.1 \text{ cm}$		
	Or correct horizontal distance between two points ± 0.1 cm		
	(e.g. X to $Y = 2.0$ cm, 1^{st} to 2^{nd} bounce = 3.8 cm, 1st to 3rd bounce 7.1 cm		
	total distance = 9.1 cm)	(1)	
	Use of scale calculation to calculate a horizontal distance	(1)	
	Use of $v = s/t$	(1)	
		(1)	
	v = 0.49 to 0.61 m s ⁻¹ (ecf value from (a)(i)	(1)	4
	(Use of show that value (0.4 m) gives 0.44 to 0.56 m s ^{-1})		
	Example of calculation		
	<u>^</u>		
	$\frac{5.7 \text{ cm}}{2.0 \text{ cm}} = \frac{0.44 \text{ m}}{2.0 \text{ cm}}$		
	3.8 cm s s = 0.293 m		
	$v = \frac{0.293 \text{ m}}{\frac{11}{20} \text{ s}} = 0.53 \text{ m s}^{-1}$		
17(b)	The idea that energy is transferred to thermal/internal energy (during	(1)	
	bounce)	(1)	
	e.g. energy is dissipated as heat Or bounce is inelastic.		
	(Do not credit references to frictional forces)		
	Velocity / speed / KE (after bounce) is less (than velocity before		
	bounce)	(1)	2
17(c)(i)	All four balls vertically above one another	(1)	
	All four balls horizontally next to original balls	(1)	2
	0		
	0		
	0 •		
	0		
17(c)(ii)	No horizontal velocity so fall is vertical		
~ / ~ /	Or No horizontal velocity so fall is down only		
	Or No horizontal velocity so no horizontal displacement / distance	(1)	
	Same vertical acceleration (so same vertical position)	(1)	2
	Total for Organian 17		12
	Total for Question 17		13

Question Number	Answer		Mark
*18(a)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	the <u>oar</u> exerts a force on the water	(1)	
	by $\underline{N3}$ the water exerts an opposite force (on the oar)	(1)	
	there is a resultant / net / unbalanced force	(1)	
	by $N1/N2$ the boat accelerates	(1)	4
18(b)(i)	work done = area under the graph	(1)	
	Value in range of 400 - 600 (J)	(1)	
	Accurate value in range 501 - 540 (J)	(1)	3
	Example of calculation $0.2 \text{ 0 m} \times 100 \text{ N} = 20 \text{ J}$ $26.2 \text{ squares} \times 20 \text{ J} = 524 \text{ (J)}$		
18(b)(ii)			
	See/use power = $\frac{\text{work done}}{\text{time}}$	(1)	
	Or divides energy by time per stroke (60/24 or 2.5 s) Multiplies energy by rate ($24/60$ or 0.4 s ⁻¹)	(1)	
	Power = 210 W (ecf from part (b)(i)) (show that value gives 200 W)	(1)	3
	Example of calculation Time per stroke = $60/24 = 2.5$ s		
	Power = $\frac{524 \text{ J}}{2.5 \text{ s}}$ = 210 W		
18(c)	Friction / drag / resistance with the <u>water</u>	(1)	
	(causes) K.E. / turbulence / movement of the water	(1)	2
18(d)	(The boat and the rower have the same velocity but) the rower and the boat have different masses	(1)	1
	Total for Question 18		13

Question	Answer		Mark
Number			
19(a)(i)	No abrupt change in direction/speed of flow		
	Or no eddies		
	Or fluid flows in layers/flow lines/streamlines		
	Or no mixing of layers		
	Or layers remain parallel	(1)	1
	Or velocity at a (particular) point remains constant (smooth and streamlined are not sufficient)	(1)	1
	(shooth and streammed are not sufficient)		
19(a)(ii)	Any 2 from:		
	Small object	(1)	
	Smooth surface	(1)	
	Low/small velocity	(1)	2
10(1)(')		(1)	
19(b)(i)	Distance between markers	(1)	2
	Diameter of the ball bearing	(1)	2
19(b)(ii)	Weight of the ball bearing	(1)	1
		()	
19(b)(iii)	Upthrust Or weight of glycerol/fluid displaced (by the ball bearing)	(1)	1
19(b)(iv)	Calculate the velocity (of the ball bearing) (for each drop) Or use $v=h/t$	(1)	
	Plot v against r^2 (or t against $1/d^2$ etc.)	(1)	
	Determines/calculates/measures the gradient	(1)	
	$\eta = \frac{2g(\rho_{\rm b} - \rho_{\rm g})}{9 \times \text{gradient}} \text{ Or gradient} = \frac{2g(\rho_{\rm b} - \rho_{\rm g})}{9 \times \eta} \text{ Or correct alternative}$	(1)	4
	(only allow MP2, MP3 & MP4 if a straight line would be produced) (do not allow MP2 if graph axes are complex, e.g. $W_b - W_g$ against $6\pi rv$)		
	(Allow converse answer for a graph of r^2 against v)		
19(c)	At a low temperature:		
	the flow rate (of the glycerol) is reduced/slower		
	Or speed (of the glycerol) decreases		
	Or (the glycerol) moves slowly	(1)	
	(Do not credit ref to nitrogen removal or flow of waste water)		
	the viscosity is high/large/increased (do not accept "thicker")	(1)	2
	(marks not awarded for answer is in terms of increasing temperature and decreasing viscosity as it is not in the context of the question)		
	Total for Question 19		13

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom