

A-level PHYSICS (7408/3BE)

Paper 3 – Section B (Electronics)

Specimen 2014

Morning

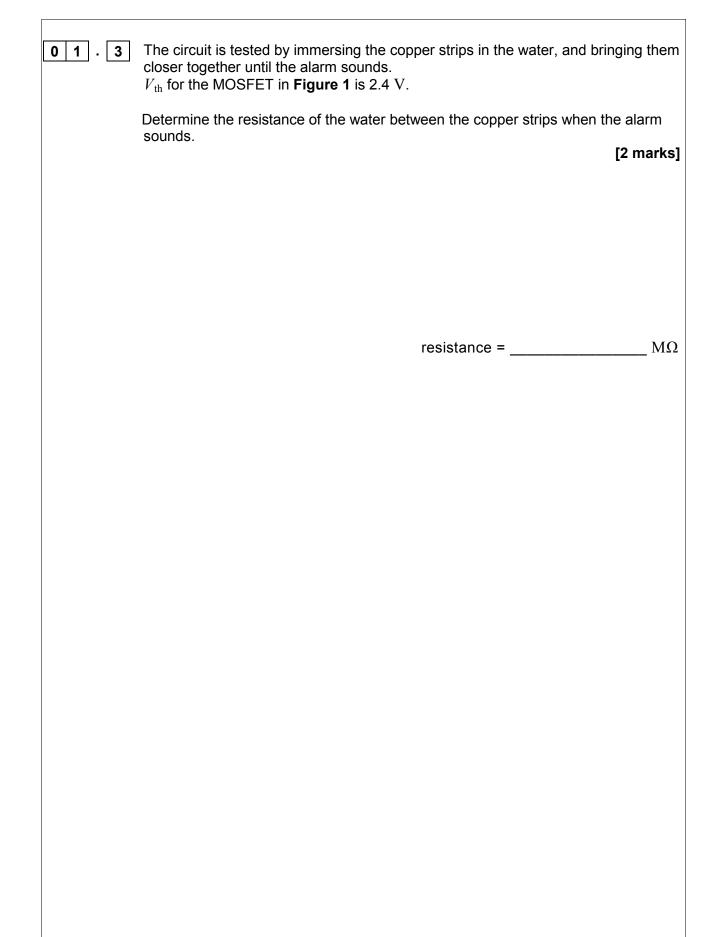
Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet
- a question paper / answer book for Section A.

Instructions

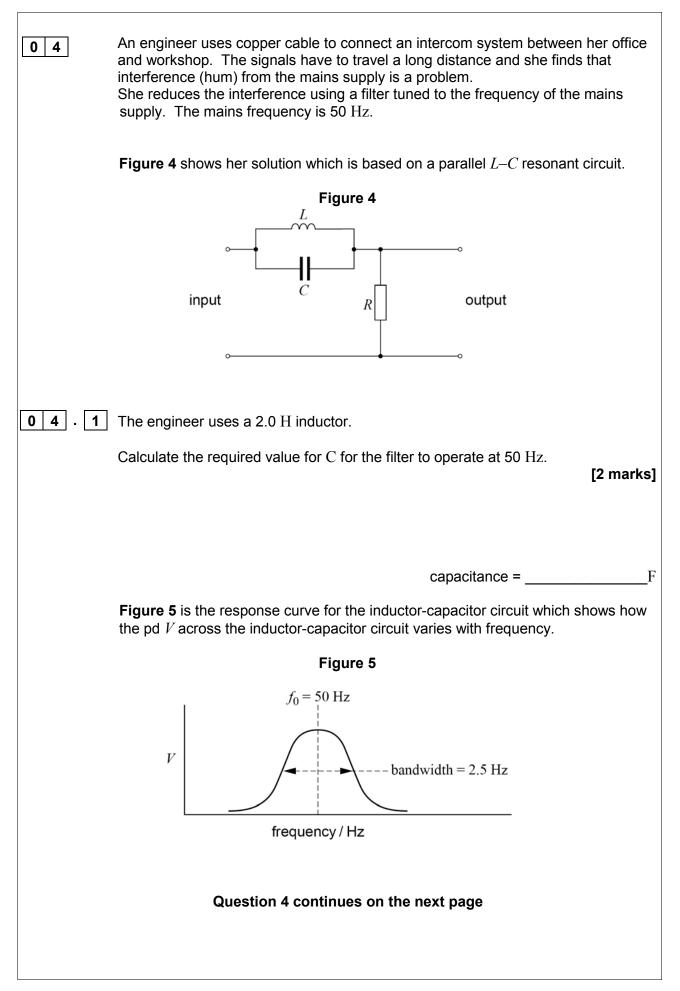

- Answer all questions.
- Show all your working.
- The total time for both sections of this paper is 2 hours.

Information

• The maximum mark for this section is 35.

lease write clearly, in block capitals, to allow character computer recognition.
entre number
urname
orename(s)
andidate signature

	Section B
	Answer all questions in this section.
01.1	MOSFETs are commonly used in circuits where low power consumption is important to extend battery life.
	State and explain the property of MOSFET devices that makes them useful in these circuits.
	[2 marks]
	Figure 1 shows an N-channel enhancement mode MOSFET, being used as part of a circuit for the water level alarm in a garden pond. When the gap between the copper strips is filled with water the MOSFET turns on and the alarm sounds. Figure 1
	copper strips
01.2	Explain the reason for the 1 $M\Omega$ resistor in this application. [2 marks]


02.1	Describe what is meant by amplitude modulation (am).	[1 mark]
02.2	A radio wave has an unmodulated frequency of 120 kHz. It is amplitude modulated by a signal from an audio transducer of frequency 2.2 kHz. Calculate the bandwidth of the modulated wave.	[1 mark]
	bandwidth =	kHz
02.3	Explain why frequency modulation (fm) is not used for commercial radio transmissions in the medium and long wave bands.	[1 mark]
02.4	State and explain one advantage of transmitting digital signals using freque modulation (fm) rather than amplitude modulation (am).	uency [2 marks]

0 3	Figure 2 shows a circuit that includes an ideal operational amplifier. A student uses this circuit to amplify the signal from the sensor before further processing by the system.
	Figure 2 R _i temperature sensor 0 V 0 V C C C C C C C C C C C C C
03.1	Point X in Figure 2 is said to be a virtual earth. Explain the meaning of the term virtual earth in this type of circuit. [2 marks]
03.2	The temperature sensor produces a signal that changes by 10 $\rm mV$ for every degree Celsius change in temperature. The signal is 0 $\rm mV$ when the temperature of the sensor is 0 $^{\circ}C.$
	The value of R_i is 22 $k\Omega$ and the value of R_f is 270 $k\Omega.$
	Calculate the output voltage V_{OUT} of the circuit in Figure 2 when the sensor is at a temperature of 50 °C.
	[2 marks]
	$V_{\rm OUT}$ =V

Г

03.3	The circuit is powered by a -15 V - 0 - +15 V supply. Explain why this circuit will not detect temperatures above 122 $^{\circ}$ C. [2 marks]
03.4	A student suggests a modification to the circuit in Figure 2 to form a difference amplifier circuit for a thermostat. The modified circuit is shown in Figure 3. Figure 3 $R_{\rm f}$
	R_{i} R_{1} R_{1} R_{2} R_{2} R_{1} R_{2} R_{2} R_{2}
	0 V • 0 V
	The output controls a circuit that switches the heater off when the output is positive. Explain how this circuit operates so that the heater switches off when the temperature reaches a pre-determined level. [3 marks]

Г

04.2	Calculate, from the graph, the Q factor of the inductor-capacitor circuit. [1 mark]
	Q factor =
04.3	The inductor is replaced to one that has an inductance of 8.0 H and a lower resistance than that of the original inductor. The capacitor is not changed. Describe how this change affects the response curve of the inductor-capacitor circuit. [2 marks]

Γ

0 5	Compare the advantages and disadvantages of optic fibre and copper wi transmitting information.	re for [6 marks]

		Q =	= (A . B) +	$(\overline{\mathbf{A}},\overline{\mathbf{B}})$			
	able 1 shows or all combina				the circuit,	and the ov	verall output, (
C	omplete the r	missing tw	o entries ir	n the truth	table.		[1 m
				Table '	1		
	A	в	Ā	B	А.В	Ā.B	Q
	0	0	1	1	0	1	
	0	1	1	0	0	0	0
	1	0	0	1	0		0
	1	1	0	0	1	0	1
fr	Complete the ounction as the ounction as the vo AND gates	Boolean	equation g	iven in pa nd one Ol	rt 6. Your	cuit that ha circuit shou	s the same Ild contain on [3 ma i
fi	unction as the vo AND gates	Boolean	equation g T gates, a	iven in pa nd one Ol	rt 6. Your	cuit that ha circuit shou	Ild contain on
fi	unction as the	Boolean	equation g T gates, a	iven in pa nd one Ol	rt 6. Your	cuit that ha circuit shou	Ild contain on
fi	unction as the vo AND gates	Boolean	equation g T gates, a	iven in pa nd one Ol	rt 6. Your	cuit that ha	Ild contain on
fi tv	unction as the vo AND gates	Boolean	equation g T gates, a	iven in pa nd one Ol	rt 6. Your	cuit that ha	ıld contain on [3 maı
fi	unction as the vo AND gates	Boolean	equation g T gates, a	iven in pa nd one Ol	rt 6. Your	cuit that ha	ıld contain on [3 maı
fi tv	unction as the vo AND gates	Boolean	equation g T gates, a	iven in pa nd one Ol	rt 6. Your	cuit that ha	ıld contain on [3 maı
fi tv	unction as the vo AND gates	Boolean	equation g T gates, a	iven in pa nd one Ol	rt 6. Your	cuit that ha	ıld contain on [3 maı
fi tv	unction as the vo AND gates	e Boolean s, two NO	equation g T gates, a Figur	iven in pa nd one Ol	irt 6. Your (R gate.	cuit that ha	ıld contain on [3 maı
fi tv	unction as the vo AND gates	e Boolean s, two NO	equation g T gates, a	iven in pa nd one Ol	irt 6. Your (R gate.	cuit that ha	ıld contain on [3 maı
fi tv	unction as the vo AND gates	e Boolean s, two NO	equation g T gates, a Figur	iven in pa nd one Ol	irt 6. Your (R gate.	cuit that ha	ıld contain on [3 maı

There are no questions printed on this page.