

A-level PHYSICS (7408/3BB)

Paper 3 – Section B (Medical Physics)

Specimen 2014

Morning

Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet
- a question paper / answer book for Section A.

Instructions

- Answer all questions.
- Show all your working.
- The total time for both sections of this paper is 2 hours.

Information

• The maximum mark for this section is 35.

Please write cle	arly, in block o	apitals, to allow charac	cter computer recognition.
Centre number		Candidate num	nber
Surname			
Forename(s)			
Candidate sign	ture		

	Section B
	Answer all questions in this section.
01.1	State what is meant by the principal focus and the power of a converging lens. [2 marks]
01.2	Complete the ray diagram below to show the formation of an image of a real object O by a diverging lens. Label the image clearly. [2 marks]
	F O F
01.3	State the defect of vision that would be corrected using a diverging lens. [1 mark]

01.4	A diverging lens of focal length –0.33 m is used to view a real object placed 0.25 m from the lens.
	Calculate the distance from the lens to the image. [2 marks]
	distance from lens to image = m
01.5	Two point sources of light are viewed by a normal eye and their images are formed at the fovea.
	State, in terms of the active receptors, the conditions necessary for two separate images to be seen. [2 marks]

02.1	Sound waves are incident on a human ear.
	Describe how the frequency and amplitude of the vibrations change as the wave is transmitted through the ear to the fluid in the inner ear. [2 marks]
02.2	Explain how the components of the ear act to amplify the pressure changes due to the sound wave. [3 marks]
02.3	A sound intensity meter, set to the dB scale, is placed near to a source of sound. The intensity level reading on the sound meter is 82 $dB.$
	Calculate in, W $\rm m^{-2}$, the intensity of the sound at the meter. [3 marks]
	intensity =W m^{-2}

02.4	The sound intensity meter is 2.0 $\rm m$ from the source which is emitting sound equally in all directions.
	Calculate the power emitted by the source. [2 marks]
	power = W
	Turn over for the next question

0 3 Positron Emission Tomography (PET) and ultrasound scans are both used in medical diagnosis. Compare the quality of the information obtained from these scans in terms of: patient safety and convenience • information available to the doctor from the images. • [6 marks]

04.1	Explain why the effective half-life of a radionuclide in a biological system is always less
	than the physical half-life. [2 marks]
04.2	The physical half-life of a radionuclide is 20 days. The nuclide was administered to a patient. Initially the corrected count rate at the patient's body was 2700 counts s ⁻¹ . Five days later, the corrected count rate at the same place on the patient was 1200 counts s ⁻¹ .
	Calculate the biological half-life of the nuclide.
	[4 marks]
	biological half-life = days

	Table 1	
	Technetium 99 m	Iodine 131
emitted radiation	gamma	beta ⁻ and gamma
half-life / hours	6.0	190
energy of gamma ray / keV	140	610
suitable for use as a tracer in		[4 ma
E	ND OF QUESTIONS	