Mark Scheme (Results) Summer 2013 GCSE Chemistry (5CH3H) Paper 01 ## **Edexcel and BTEC Qualifications** Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus. If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices. You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service. ## Pearson: helping people progress, everywhere Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk Summer 2013 Publications Code UG036881 All the material in this publication is copyright © Pearson Education Ltd 2013 ## **General Marking Guidance** - All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last. - Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions. - Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie. - There is no ceiling on achievement. All marks on the mark scheme should be used appropriately. - All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. - For questions worth more than one mark, the answer column shows how partial credit can be allocated. This has been done by the inclusion of part marks eg (1). - Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited. - When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted. - Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response. ## **Quality of Written Communication** Questions which involve the writing of continuous prose will expect candidates to: - Write legibly, with accurate spelling, grammar and punctuation in order to make the meaning clear - Select and use a form and style of writing appropriate to purpose and to complex subject matter - Organise information clearly and coherently, using specialist vocabulary when appropriate. | Question | Answer | Acceptable answers | Mark | |----------|---|--------------------|------| | Number | | | | | 1(a)(i) | B H ⁺ and Na ⁺ ions | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 1(a)(ii) | An explanation linking • electron(s) (1) | ignore reference to number of electrons do not allow negative charge | | | | (have been) lost/removed (1) conditional on
electrons | chlorine gains electrons (0) allow chlorine loses electrons (1) | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 1(a)(iii) | it contains (excess) {hydroxide/OH⁻} ions (1) {sodium/Na⁺} ions and {hydroxide/OH⁻} ions remain (1) it is sodium hydroxide/NaOH (1) | ignore solution has pH greater than 7 | | | | {hydrogen/H⁺} ions have
been removed (at the
cathode) (1) | allow no hydrogen ions left/acidic ions removed | (1) | | Question | Answer | Acceptable answers | Mark | |----------|--|----------------------------------|------| | Number | | | | | 1(a)(iv) | use {molten/liquid} {sodium chloride /electrolyte} / melt {it/sodium chloride/electrolyte} | ignore just liquid/liquid sodium | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | 1(b)(i) | An explanation linking | half equation, even unbalanced,
showing hydroxide ions losing
electrons (2) | | | | Marking point 1 • {hydroxide/OH ⁻ } ions (from water) (1) | do not allow marking point 1 if only {oxygen/sulfate} ions mentioned | | | | Marking point 2(ions) lose electrons /are oxidised (1) | | (2) | | Question | Answer | Acceptable answers | Mark | |----------|--------------------------|--------------------------------|------| | Number | | | | | 1(b)(ii) | 1.27 / 63.5 (1) (= 0.02) | 0.02 with no working (1) | | | | | | | | | | correct working with incorrect | (1) | | | | answer (1) | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|----------------------------------|--------------------|------| | 2(a)(i) | D C ₄ H ₁₀ | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 2(a)(ii) | H C=C H H C+ | allow -CH ₃ | | | | one C=C in a molecule with three consecutive carbon atoms (1) | do not allow two C=C in a molecule | | | | rest of structure correct, ignore bond angles, conditional on first marking point(1) | allow (1) for completely correct dot and cross diagram | (2) | | Question | Answer | Acceptable answers | Mark | |----------|------------|--------------------|------| | Number | | | | | 2(b) | C oxidised | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 2(c)(i) | A description including two from • effervescence / fizzing / bubbles of gas (1) | ignore {cloudy/white ppt} /'gas
formed'/colour change /name of
gas / changes to a liquid | | | | solid {disappears/clears} /(colourless)solution formed (1) | (solid/sodium carbonate/it) dissolves (1) | (2) | | Question | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | Number
2(c)(ii) | CH ₃ COOC ₂ H ₅ /CH ₃ COOCH ₂ CH ₃ /
CH ₃ CO ₂ C ₂ H ₅ / CH ₃ CO ₂ CH ₂ CH ₃ /
C ₂ H ₅ O ₂ CCH ₃ / CH ₃ CH ₂ OOCCH ₃ (1) | allow displayed formulae/ C ₄ H ₈ O ₂ do not allow formulae ending in – COOH/-COO or any formula that does not show an ester | | | | H ₂ O (1) | do not allow H2O / H ² O /lower case h/HOH | | | | | maximum (1) if additional incorrect balancing ignore state symbols | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | 3(a) | $C_2H_4 + H_2O \rightarrow C_2H_5OH$
C_2H_4 as reactant (1) | do not allow H2O / H ² O /lower case h/HOH | | | | rest of equation correct conditional on C ₂ H ₄ as a reactant (1) | allow C₂H₀O for ethanol ignore state symbols | (2) | | Question
Number | · · · · · · · · · · · · · · · · · · · | | Answer Acceptable answers | | Answer Acceptable answers | | Mark | |--------------------|--|--|---------------------------|--|---------------------------|--|------| | 3(b) | A description including any two from dissolve sugar in water /sugar solution (1) | allow glucose solution ignore carbohydrate | | | | | | | | (add) yeast (1) warm / any temperature or range within 15 to 40°C (1) | allow room temperature ignore heat unless specified temperature ignore optimum temperature | | | | | | | | anaerobic / {no/little} {air/oxygen} can enter the apparatus (1) | do not allow just 'sealed container' ignore fractional distillation | (2) | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 3(c) | An explanation linking Marking point 1 – sugar- one from • sugar obtained from {plants /crops/specific crop} (1) • (plenty of) land available to grow {plants /crops/specific crop} (for fermentation)(1) Marking point 2 - ethene • ethene obtained from {crude oil / fractional distillation /cracking} (1) | ignore answers that just repeat the information in the question ignore vague answers such as carbon neutral/environmentally friendly for marking point 1 OR 2, allow plants renewable/{crude oil/ethene} non-renewable (1) | | | | Marking point 3 – cost/energy – one from • cannot afford to buy crude oil (1) • crude oil is too expensive (1) • more expensive to {use/buy/produce} ethene (1) • cheaper to use fermentation (1) | allow {little/no} {heat/energy} required for fermentation (1) allow {high temperature /high pressure} required for hydration of ethene (1) | (3) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | 3(d) | An explanation including any two from • formulae differ by CH ₂ | general formula is C _n H _{2n+1} OH (2) | | | | same general formula | allow increase by {CH ₂ /1 carbon and 2 hydrogens} | | | | all have {OH/hydroxyl group} | do not allow incorrect general formula | | | | | allow have similar chemical {reactions /properties}/same functional group/OH from an incorrect general formula | | | | | ignore 'hydroxide'/all end in (an)ol /all alcohols | | | | | ignore physical properties | | | | | maximum (1) if hydroxide ions /carboxyl group | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 4 (a) | An explanation linking Marking point 1 – one from • forward and back reactions take place (at the same time) (1) • rate of the forward and back reactions is the same (1) | assume 'both reactions' implies the forward and back reaction allow reversible reaction with the same rate (1) allow reversible reaction in a closed system (1) do not allow the forward reaction equals the reverse reaction | | | | Marking point 2 – one from no (overall) change in the {amount/concentration/mas s/ volume} of each {substance / reactant / product} (1) no observable change (1) | allow overall effect is nil (1) allow reactants and products reach a balance (1) ignore forward reaction cancels out back reaction do not allow {amount / concentration /mass/volume} of reactants and products are equal | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 4(b)(i) | An explanation linking two of higher pressure favours forward reaction/equilibrium shifts to the right (1) because decrease in {volume / number of molecules}/side with lower volume (1) | ignore answers related to rate/collisions maximum (1) if 3 statements given, but 1 is incorrect | | | | yield increases (1) | | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 4(b)(ii) | An explanation linking any two of | ignore answers related to rate/collisions | | | | lower temperature favours
forward reaction/equilibrium
shifts to the right (1) because (forward) reaction
is exothermic (1) | if answer refers to increasing
temperature, maximum (1) for
(forward) reaction is exothermic
/ reverse reaction is endothermic | | | | • yield increases (1) | maximum (1) if 3 statements given, but 1 is incorrect | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|----------|--------------------|------| | 4(b)(iii) | catalyst | iron | (1) | | Question | Answer | Acceptable answers | Mark | |----------|-----------------------|--------------------|------| | Number | | | | | 4(c)(i) | 3 x 1000 (1) (= 3000) | | (1) | | | | | | | Question | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | Number
4(c)(ii) | marks are for the working Method 1 $14 + (3 \times 1) (1) g \text{ of NH}_3$ makes $14 + (4 \times 1) + 14 + (3 \times 16) (1) g$ NH_4NO_3 $34 g \text{ of NH}_3 \text{ makes}$ $\frac{(14 + (4 \times 1) + 14 + (3 \times 16)) \times 34}{17} \text{ or}$ 17 $80 \times 34 \text{ or}$ 17 $2(14 + (4 \times 1) + 14 + (3 \times 16)) g NH_4NO_3$ $(1) = 160 g$ | full marks awarded for an answer of 160 g with or without any working allow ecf on incorrect M _r s for either method | | | | Method 2 moles of NH ₃ = $\frac{34}{17}$ (1) = 2 moles of NH ₄ NO ₃ = moles of NH ₃ or relative formula mass NH ₄ NO ₃ = 80 (1) mass NH ₄ NO ₃ = 2 x 80 (1) = 160 g | allow ecf for incorrect moles eg if moles of $NH_3 = 0.5$ relative formula mass $NH_4NO_3 = 80 (1)$ mass $NH_4NO_3 = 0.5 \times 80 (1) = 40 g$ | (3) | | Question | Answer | Acceptable answers | Mark | |----------|------------------|--------------------|------| | Number | | | | | 5(a) | A neutralisation | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 5(b) | Any one from | ignore not as accurate/reliable | | | | no {sharp/clear/distinct}
change in colour | allow too difficult to see when it is {neutral/reaction is complete} | | | | gradual colour change | ignore speed of colour change | | | | there are too many different colours | | (1) | | Question | | Indicative Content | Mark | |---------------|-------|--|------| | Number
QWC | *5(c) | A description including some of the following points | | | | | titration experiment rinse pipette with alkali and burette with acid measure alkali using a pipette into suitable container e.g. flask/beaker add a few drops of indicator / suitable named indicator (eg methyl orange/phenolphthalein) flask on a white tile fill burette with acid read level/volume (of acid) in burette add acid from burette to the flask slowly / swirl the flask until {indicator just changes colour/correct colour change for named indicator (eg methyl orange yellow to peach/orange, phenolphthalein pink to colourless)/solution is neutral} read level/volume (of acid) in burette repeat experiment until concordant results | | | | | salt preparation mix the same volume of alkali with the volume of acid determined from the first experiment but do not add indicator (or add (activated) charcoal to remove indicator, then filter) pour solution into an evaporating basin {heat solution/leave the water to evaporate} until pure salt crystals are left | (6) | | Level | 0 | No rewardable content | | | 1 | 1 - 2 | a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy | | | 2 | 3 - 4 | a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy | | | 3 | 5 - 6 | a detailed description including titration and salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, hydrochloric acid in burette, add acid to alkali until colour change, repeat until concordant results, evaporate water. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors | | | Question | Answer | Acceptable answers | Mark | |----------|----------------|--------------------|------| | Number | | | | | 5(d)(i) | 22.6 + 22.8 | | (1) | | | 2 (1) (= 22.7) | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 5(d)(ii) | marks are for the working no. moles HCI = $23.2 \times 0.1 \times 0.1 \times 0.00 \times 0.000 \times 0.000 \times 0.0000 0.00000 \times 0.00000 \times 0.0000000 \times 0.00000000$ | 0.0928/0.093 with or without working (3) 0.09 with no working (2) common incorrect answers with working 0.108/0.1077 (2) – used 1:1 ratio but 25x0.1/23.2 0.928 (2) – used 1:1 ratio but missed out 0.1 | | | | (= 0.0928) mol dm ⁻³ | | (3) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--------------------|------| | 6(a)(i) | A carbonate ion CO ₃ ²⁻ | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|--|------| | 6(a)(ii) | A description including | maximum (1) if additional reagents added | | | | warm / heat / boil (1) | ignore any ppt | | | | {gas/ammonia} turns (damp red/pink) litmus blue / (damp red/pink) litmus turns blue when held above (the mixture)(1) | allow pungent smell / smell of {ammonia/wet nappies} /alkaline gas / effect of ammonia on other named indicators /dense white fumes with conc hydrochloric acid | | | | | ignore litmus turns blue in ammonium ions/sodium hydroxide/mixture | | | | | do not allow gas/ammonia if blue litmus turns red/pink | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 6(b) | $Al^{3+} + 3OH^{-} \rightarrow Al(OH)_{3}$ | allow multiples | | | | OH- (1) | allow HO ⁻ (1) | | | | AI(OH) ₃ (1) | allow Al(HO) ₃ (1)
do not allow Al(HO) ³ /lower case | | | | balancing 3, conditional on correct formulae (1) | h | | | | | ignore state symbols/3Na ⁺ on both sides | (3) | | Question | | Indicative Content | Mark | |--------------|-------|--|-------------------------| | Number *6(c) | | An explanation including some of the following points | | | | Stay | test for cation flame test if the flame is yellow/not lilac, sodium ions are present if the flame is lilac/not yellow, potassium ions are present | | | | | test for iodide ions make a solution of the crystals in water add dilute nitric acid add silver nitrate solution if there is a yellow precipitate, iodide ions are present if there is no precipitate, sulfate ions are present Ag⁺ + I → AgI OR | | | | | make a solution of the crystals in water add chlorine water then cyclohexane if the cyclohexane/top layer turns purple, iodide ions were present if there is no colour change, sulfate ions are present Cl₂ + 2l⁻ → 2Cl⁻ + l₂ | | | | | test for sulfate ions make a solution of the crystals in water add dilute {hydrochloric/nitric} acid add barium {chloride/nitrate} solution if there is a white precipitate, sulfate ions are present if there is no precipitate, iodide ions are present Ba²⁺ + SO₄²⁻ → BaSO₄ | (6) | | Level | 0 | No rewardable content | | | 1 | 1 - 2 | a limited description of test for any 1 ion e.g. flame test, yellow flame, sodium ions are present. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy | | | 2 | 3 - 4 | a simple description to identify a cation and an anion e.g. if the substance is sodium sulfate, it will give a yellow flame in a flame test and a white precipitate with barium chloride solution. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy | | | 3 | 5 - 6 | a detailed description to identify at least 3 ions e.g. carry flame test, yellow flame, sodium ions present, lilac flame, potassium ions present, add silver nitrate solution to solut substance, yellow precipitate, iodide ion. the answer communicates ideas clearly and coherently use range of scientific terminology accurately spelling, punctuation and grammar are used with few erro | out a
ion of
es a | Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UG036881 Summer 2013 For more information on Edexcel qualifications, please visit our website www.edexcel.com Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE