Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Secondary Education Foundation Tier June 2014

CH2FP

Additional Science

Unit Chemistry C2

ChemistryUnit Chemistry C2

Thursday 15 May 2014 9.00 am to 10.00 am

For this paper you must have:

- a ruler
- the Chemistry Data Sheet (enclosed).

You may use a calculator.

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 7 should be answered in continuous prose.
 - In this question you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.

Answer all questions in the spaces provided.

1 This question is about diamonds.

Draw a ring around the correct answer to complete each sentence.

- 1 (a) Diamonds are found in meteorites.
- **1 (a) (i)** Meteorites get very hot when they pass through the Earth's atmosphere, but the diamonds do not melt.

Diamond has a low melting point.

[1 mark]

1 (a) (ii) Most diamonds found in meteorites are nanodiamonds.

A nanodiamond contains a few

hundred thousand atoms.

[1 mark]

1 (b) Diamonds are used for the cutting end of drill bits.

Diamonds can be used for drill bits because they are

shiny.

hard.

soft.

[1 mark]

1 (c) Figure 1 shows the arrangement of atoms in diamond.

Figure 1

1 (c) (i) Diamond is made from

carbon

nitrogen

oxygen

atoms.

[1 mark]

1 (c) (ii) Each atom in diamond is bonded to

three

four

other atoms.

five

[1 mark]

1 (c) (iii) Diamond has a giant

ionic

structure.

metallic

covalent

[1 mark]

1 (c) (iv) In diamond

all

none

some

of the atoms are bonded together.

[1 mark]

7

2 Dental braces are made from nitinol wires. Nitinol is a mixture of metals.

-Dental brace

2 (a) Nitinol can return to its original shape after being deformed.

Draw a ring around the correct answer to complete the sentence.

[1 mark]

alloy.

Nitinol is a shape memory

catalyst.

polymer.

2 (b) Figure 2 shows the arrangement of atoms in a pure metal and in a mixture of metals.

Figure 2

The mixture of metals is harder than the pure metal.

Use **Figure 2** to explain why.

[2 marks]

.....

(c)	Gold and stainless steel are also used for dental braces.
	Suggest two factors to consider when choosing which metal to use for dental braces. [2 marks]
(d)	A thermosetting polymer is used to hold dental braces on the teeth.
	Figure 3 shows the structure of a thermosetting polymer.
	Figure 3
	Thermosetting polymer
	How can you tell from Figure 3 that the polymer is thermosetting?
	[1 mark]

_

Figure 4 represents the reaction of sulfur dioxide with oxygen.

3 (a) (i) Complete the word equation for the reaction of sulfur dioxide with oxygen.

[1 mark]

3 (a) (ii) Draw a ring around the correct answer to complete the sentence.

[1 mark]

$$\begin{array}{c} \text{a compound.} \\ \text{Sulfur dioxide (SO}_2) \text{ is} \\ \\ \text{a mixture.} \end{array}$$

3 (b) The reactants are gases.

When the pressure of the gases is increased, the reaction gets faster.

Complete the sentence.

[1 mark]

When the pressure of the gases is increased,

the frequency of the collisions

3 (c)	The particles need energy to react.	
	Complete the sentence. [1 mark]	
	The minimum amount of energy that particles need to react is called	
	the energy.	
3 (d)	Give one way of increasing the rate of the reaction other than changing the pressure. [1 mark]	

Turn over for the next question

4 Fertilisers contain elements that plants need.

AQAGROW

Plant Fertiliser

Contains:

- Nitrogen
- Phosphorus
- Potassium
- **4 (a) Figure 5** represents a nitrogen atom.

Figure 5

Complete each sentence.

4 (a) (i)	The mass number of this nitrogen atom is	[1 mark]
4 (a) (ii)	Atoms of nitrogen with different numbers of neutrons are called	[1 mark]
4 (a) (iii)	Compared with a proton, the mass of an electron is	[1 mark]

- 4 (b) Fertilisers can be made from ammonia.
- **4 (b) (i)** Which diagram, **A**, **B**, or **C**, represents the electronic structure of an ammonia molecule? [1 mark]

The electronic structure of an ammonia molecule is shown in diagram

4 (b) (ii) What is the correct formula of ammonia?

Draw a ring around the correct answer.

[1 mark]

N₃H NH₃ NH³

Question 4 continues on the next page

4 (c)	A student made ammonium nitrate by reacting ammonia solution with an acid.	
4 (c) (i)	Name the acid used to make ammonium nitrate.	[1 mark]
		· -
4 (c) (ii)	Complete the sentence.	[1 mark]
	The student added a few drops of, which change when the ammonia solution had neutralised the acid.	ed colour
4 (c) (iii)	The student added charcoal and filtered the mixture.	
	This produced a colourless solution of ammonium nitrate.	
	How is solid ammonium nitrate obtained from the solution?	[1 mark]
4 (c) (iv)	A farmer put ammonium nitrate fertiliser onto a field of grass.	
	Suggest what would happen to the grass.	[1 mark]

4 (d) Some fertilisers contain potassium chloride.

Potassium reacts with chlorine to produce potassium chloride.

Figure 6 shows how this happens.

The dots (•) and crosses (x) represent electrons.

Only the outer shell is shown.

Figure 6

Describe, as fully as you can, what happens when potassium reacts with chlorine to

Use Figure 6 to help you answer this question.

oduce potassium chloride. [4 ma	_

13

- **5** Some students investigated reactions to produce magnesium.
- **5 (a)** The students used electrolysis to produce magnesium from magnesium chloride, as shown in **Figure 7**.

Negative electrode

d.c. power supply

Positive electrode

supply

Molten magnesium chloride

5 (a) (i) Magnesium chloride contains magnesium ions and chloride ions.

Why does solid magnesium chloride not conduct electricity?

[1 mark]

5 (a) (ii) One of the products of the electrolysis of molten magnesium chloride is magnesium.

Name the other product.

[1 mark]

5 (a) (iii) Why do magnesium ions (Mg²⁺) move to the negative electrode?

[1 mark]

5 (a) (iv)	At the negative electrode, the magnesium ions (Mg ²⁺) gain electrons to become magnesium atoms.			electrons to become
	How many electr	rons does each	magnesium ion gain?	[1 mark]
5 (b)	The students did	•	four times and weighed the	e magnesium produced.
			Table 1	
		Experiment	Mass of magnesium produced in grams	
		1	1.13	
		2	0.63	
		3	1.11	
		4	1.09	
5 (b) (i)	There is an anor Suggest one pos		r the anomalous result.	[1 mark]
5 (b) (ii)	Calculate the me result.	ean mass of mag	gnesium produced, taking a	ccount of the anomalous [2 marks]
			Mean mass =	= g

5 (c)	The formula of magnesium chloride is MgCl ₂	
	The relative formula mass of magnesium chloride is 95.	
	The relative atomic mass of magnesium is 24.	
5 (c) (i)	Use the equation to calculate the percentage mass of magnesium in magnesium chloride.	
	Percentage mass of magnesium = $\frac{\text{mass of magnesium}}{\text{mass of magnesium chloride}} \times 100\%$ [2	marks]
	Percentage mass of magnesium in magnesium chloride =	%
5 (c) (ii)	Draw a ring around the relative mass of chlorine in MgCl ₂ [1	l mark]
	71 95 119	

- **5 (d)** Magnesium is also produced from the reaction of magnesium oxide with silicon.
- 5 (d) (i) The equation for the reaction is:

$$2 \; \mathsf{MgO}(\mathsf{s}) \;\; + \;\; \mathsf{Si}(\mathsf{s}) \;\; \Longrightarrow \;\; \mathsf{SiO}_2(\mathsf{s}) \;\; + \;\; 2 \; \mathsf{Mg}(\mathsf{s})$$

What is the meaning of this symbol \implies ?

Draw a ring around the correct answer.

[1 mark]

neutralisation reaction

precipitation reaction

reversible reaction

5 (d) (ii) The forward reaction is endothermic.

Draw a ring around the correct answer to complete the sentence.

[1 mark]

In an endothermic reaction the temperature of the surroundings

decreases.

increases.

stays the same.

12

Turn over for the next question

6	The label shows the ing	redients in a drink called Cola.	
	r		
		Cola	
		Ingredients:	
		Carbonated water Sugar Colouring Phosphoric acid Flavouring Caffeine	
6 (a) (i)	The pH of carbonated w	vater is 4.5.	
	The pH of Cola is 2.9.		
	Name the ingredient on	the label that lowers the pH of Cola to 2	2.9. [1 mark]
6 (a) (ii)	Which ion causes the pl	H to be 2.9?	[1 mark]

6 (b) A student investigated the food colouring in Cola and in a fruit drink using paper chromatography.

The chromatogram in **Figure 8** shows the student's results.

Figure 8

6 (b) (i) Complete the sentence.

	The start line should be drawn with a ruler and	
	Give a reason for your answer.	[2 marks]
6 (b) (ii)	Suggest three conclusions you can make from the student's results.	[3 marks]

6 (c)		e can be separated from the other compounds i omatography.	n the drink by	
	Why do	different compounds separate in a gas chroma	tography colu	mn? [1 mark
6 (d)	Caffein	e is a stimulant.		
	Large a	amounts of caffeine can be harmful.		
6 (d) (i)	Only o	ne of the questions in the table can be answere	d by science a	alone.
	Tick (✓	one question.		[1 mark
				[1 mark
		Question	Tick (✓)	
		Should caffeine be an ingredient in drinks?		
		Is there caffeine in a certain brand of drink?		
		How much caffeine should people drink?		
6 (d) (ii)		vo reasons why the other questions cannot be a		[2 marks
	Reasor	າ 2		

7	In this question you will be assessed on using good English, organising
	information clearly and using specialist terms where appropriate.

Explain why chlorine $({\rm Cl_2})$ is a gas at room temperature, but sodium chloride (NaCl) is a solid at room temperature.

Chlorine

Sodium chloride

 $\mathrm{CI}-\mathrm{CI}$

your answer.
[6 marks]
Extra space

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Acknowledgement of copyright-holders and publishers

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified.

Question 2: Photograph © Thinkstock

Copyright © 2014 AQA and its licensors. All rights reserved.

