

20.3 Stereoisomerism

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

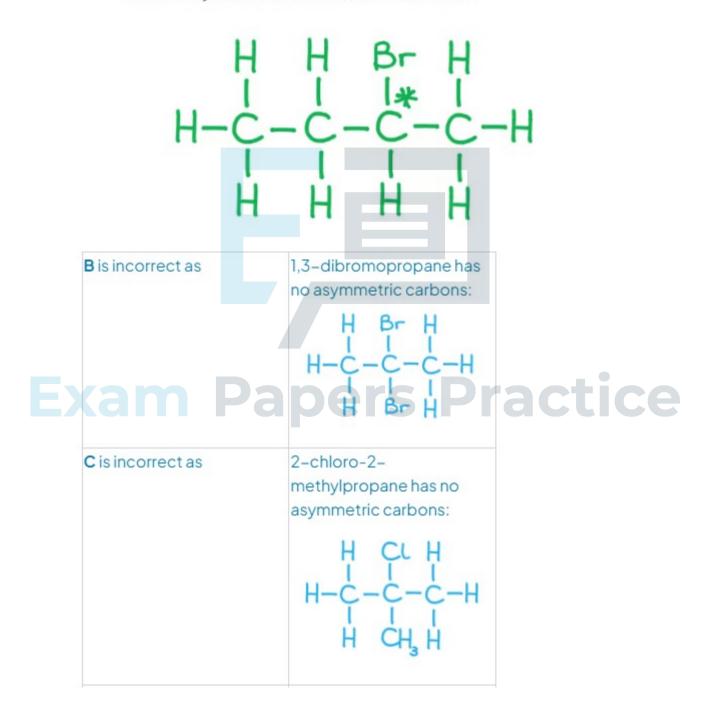
The correct answer is A because:

- Cis and trans isomers differ by having two of the same groups on the same side or opposite side of the plane of double bond
- The identical groups are ethyl CH₃CH₂ which are the same side in X and on opposite sides in Z

	Y is not an isomer of X or W (Y is short of an ethyl group)
D is incorrect as	W and Z are the same molecule. If you flip W by 180° you get Z

2

The correct answer is C because:


- Following the naming rules:
 - o The carbon skeleton is a derivative of ethene
 - The lowest number combination for substituents is 1,1,2
 - The halogens are named in alphabetical order
 - The CIP rule is that the two atoms with the highest atomic numbers on the same side of the double bond is the Z isomer, in this case Br and CI

A & B are incorrect as	this does not give the lowest numbering combination
D is incorrect	this is the right molecule, but the
as	wrong E/Z isomer

The correct answer is A because:

- The second carbon on the chain has four different groups on it so is an asymmetric carbon resulting in two optical isomers
- The best way to see this is to draw the molecule:

D is incorrect as	3-bromopentane has no asymmetric carbons:
	H H Br H H I I I I H-C-C-C-C-H I I I I H H H H H

The correct answer is C because:

- Two methyl groups are on the same side of the double bond so this is a cis isomer
- The lowest number position for the double bond is 2, which makes the methyl group on the third carbon, so the molecule is cis-3-methyl-2hexene
- It can also be named cis-3-methylhex-2-ene

A is incorrect as	this is not the lowest numbering combination	
B is incorrect as	this is not a trans isomer nor the lowest numbering combination	ractice
D is incorrect as	this is the right numbering but not the right isomer	

The correct answer is **B** because:

 The second carbon on the chain has four different groups(methyl, ethyl, hydroxyl and hydrogen) attached so it will have enantiomers

CH₃CH₂CH(OH)CH₃

· Enantiomers are optical isomer pairs

A is incorrect	the double bond has two hydrogens attached at one end so it cannot form <i>E/Z</i>
as	isomers
C is incorrect as	cis-trans isomers have the double bond located on the same carbon. But-1-ene and but-2-ene are positional isomers
D is incorrect as	optical isomers have the same name with a prefix in front(+/-, d/l, D/L and R/S are used). Butan-1-ol and butan-2-ol are positional isomers

Exam Papers Practice