A Level Physics CIE

2. Kinematics

CONTENTS

Equations of Motion
Displacement, Velocity \& Acceleration
Motion Graphs
Area under a Velocity-Time Graph
Gradient of a Displacement-Time Graph
Gradient of a Velocity-Time Graph
Deriving Kinematic Equations
Solving Problems with Kinematic Equations
Acceleration of Free Fall Experiment
Projectile Motion

2.1 Equations of Motion

2.1.1 Displacement, Velocity \& Acceleration

Defining Displacement, Velocity \& Acceleration

Scalar quantities

- Remember scalar quantities only have a magnitude (size)
- Distance: the total length between two points
- Speed: the total distance travelled per unit of time

Vector quantities

- Remember vector quantities have both magnitude and direction
- Displacement: the distance of an object from a fixed point in a specified direction
- Velocity: the rate of change of displacement of an object

$$
\begin{aligned}
& \text { ACCELERATION }=\frac{\text { CHANGE } \operatorname{IN} \text { VELOCITY }}{\text { TIME }} \\
& 1 \begin{array}{c}
\text { TIME } \\
\begin{array}{l}
\text { ACCELERATION IS MEASURED } \\
\text { IN METRES PER SECOND EACH } \\
\text { SECOND }\left(\mathrm{m} \mathrm{~s}^{-2}\right)
\end{array}
\end{array}
\end{aligned}
$$

2.1.2 Motion Graphs

Motion Graphs

- Three types of graph that can represent motion are displacement-time graphs, velocity-time graphs and acceleration-time graphs
- On a displacement-time graph...
- slope equals velocity
- the y-intercept equals the initial displacement
- a straight(diagonal) line represents a constant velocity
- a curved line represents an acceleration
- a positive slope represents motion in the positive direction
- a negative slope represents motion in the negative direction
- a zero slope (horizontal line) represents a state of rest
- the area under the curve is meaningless

VELOCITY-TIME
GRAPH FOR CONSTANT VELOCITY
VELOCITY-TIME GRAPH FOR INCREASING VELOCITY
VELOCITY-TIME
GRAPH FOR INCREASING ACCELERATION
- On an acceleration-time graph...
- slope is meaningless
- the y-intercept equals the initial acceleration
- a zero slope (horizontal line) represents an object undergoing constant

EXAM PAPERS PRACTICE

acceleration

- the area under the curve equals the change in velocity

How displacement, velocity and acceleration graphs relate to each other

ACCELERATION-TIME
GRAPH FOR CONSTANT
VELOCITY

elp, ACCELERATION-TIME GRAPH FOR INCREASING VELOCITY
ACCELERATION-TIME GRAPH FOR INCREASING ACCELERATION

2.1.3 Area under a Velocity-Time Graph

Area under a Velocity-Time Graph

- Velocity-time graphs show the speed and direction of an object in motion over a specific period of time
- The area under a velocity-time graph is equal to the displacement of a moving object
displacement $=$ area under a velocity-time graph

? Worked Example

The velocity-time graph of a vehicle travelling with uniform acceleration is shown in the diagram below.

displacement of the vehicle at 40 s .
EXAM PAPERS PRACTICE

```
THE DISPLACEMENT IS EQUAL TO THE AREA UNDER A VELOCITY-TIME GRAPH
```


Exam Tip

Always check the values given on the y-axis of a motion graph - students often confuse displacement-time graphs and velocity-time graphs. The area under the graph can often be broken down into triangles, squares and rectangles, so make sure you are comfortable with calculating area!

2.1.4 Gradient of a Displacement-Time Graph

Gradient of a Displacement-Time Graph

- Displacement-time graphs show the changing position of an object in motion
- They also show whether an object is moving forwards (positive displacement) or backwards (negative displacement)
- A negative gradient $=$ a negative velocity (the object is moving backwards)
- The gradient (slope) of a displacement-time graph is equal to velocity
- The greater the slope, the greater the velocity

- Worked Example

A car driver sees a hazard ahead and applies the brakes to bring the car to rest.What does the displacement-time graph look like?

EXAM PAPERS


```
VELOCITY IS EQUAL TO THE GRADIENT OF THE DISPLACEMENT-TIME GRAPH
```

DISPLACEMENT IS
INCREASING AT A
CONSTANT RATE

Exam Tip

Don't forget that velocity is a vector quantity; it has a size and a direction. If velocity is initially positive and then becomes negative, then the object has changed direction.

```
2.1.5 Gradient of a Velocity-Time Graph
```


Gradient of a Velocity-Time Graph

- Acceleration is any change in the velocity of an object in a given time

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time }}=\frac{(v-u)}{t}
$$

- As velocity is a vector quantity, this means that if the speed of an object changes, or its direction changes, then it is accelerating
- An object that slows down tends to be described as 'decelerating'
- The gradient of a velocity-time graph is equal to acceleration

?
Worked Exan
What does the graph?

EXAM PAPERS PRACTICE

2.1.6 Deriving Kinematic Equations

Deriving Kinematic Equations of Motion

- The kinematic equations of motion are a set of four equations which can describe any object moving with constant acceleration
- They relate the five variables:
- $s=$ displacement
- $u=$ initial velocity
- $v=$ final velocity
- $a=$ acceleration
- $t=$ time interval
- It's important to know where these equations come from and how they are derived:


```
FROM THE GRADIENT
WE CAN DEDUCE
ACCELERATION IS
EQUAL TO EQUAL TO
```

- $\frac{\Delta y}{\Delta x}=\frac{\Delta v}{\Delta t}=\frac{(v-u)}{t}$
- $a=\frac{(v-u)}{t}$
 SIDES BY t

$$
\text { - } a t=(v-u)
$$

```
REARRANGING
LEADS TO
```

- $v=u+a t$

A graph showing how the velocity of an object varies with time

DISPLACEMENT IS EQUAL TO AVERAGE VELOCITY \times TIME SO:

The average velocity is halfway between u and v

EXAM PAPERS PRACTICE

TAKING THE EQUATIONS WE SUBSTITUTING EQUATION (1) AND (2) DERIVED ABOVE

- $v=u+a t$
(1)
- $s=\frac{(v+u)}{2} t$

- $s=u t+\frac{1}{2} a t^{2}$

The two terms ut and $1 / 2 a t^{2}$ make up the area under the graph

$\underset{\sim}{\mathcal{X} \div \text { Deriving }} v^{2}=u^{2}+2$ as

TAKING THE EQUATIONS WE DERIVED ABOVE
(1)

$$
\begin{array}{r}
\circ v=u+a t \rightarrow t=\frac{v-u}{a} \\
s=\frac{(v+u)}{2} t
\end{array}
$$

$\circ s=\frac{v^{2}-u^{2}}{2 a} \curvearrowright \begin{cases}\text { MULTIPLY } & \text { BOTH } \\ \text { SIDES BY } & 2 a\end{cases}$

- $s=\frac{(v+u)}{2} \times \frac{(v-u)}{a}$
- $v^{2}=u^{2}+2 a s$

SUBSTITUTING (1) INTO (2)

This final equation can be derived from two of the others

Summary of the four equations of uniformly accelerated motion

2.1.7 Solving Problems with Kinematic Equations

Solving Problems with Kinematic Equations

- Step 1: Write out the variables that are given in the question, both known and unknown, and use the context of the question to deduce any quantities that aren't explicitly given
- e.g. for vertical motion $a= \pm 9.81 \mathrm{~m} \mathrm{~s}^{-2}$, an object which starts or finishes at rest will have $u=0$ or $v=0$
- Step 2: Choose the equation which contains the quantities you have listed
\circ e.g. the equation that links s, u, a and t is $s=u t+1 / 2 a t^{2}$
- Step 3: Convert any units to SI units and then insert the quantities into the equation and rearrange algebraically to determine the answer

?

Worked Example
The diagram shows an arrangement to stop trains that are travelling too

coming from the left travel at a speed of $50 \mathrm{~ms}^{-1}$. At marker 1 , the driver must apply the brakes so that the train decelerates uniformly in order to pass marker 2 at no more than $10 \mathrm{~ms}^{-1}$. The train carries a detector that notes the times when the train passes each marker and will apply an emergency brake if the time between passing marker 1 and marker 2 is less than 20 s.How far from marker 2 should marker 1 be placed?

EXAM PAPERS PRACTICE

```
STEP 1
```

```
OUR KNOWN VARIABLES ARE
```

OUR KNOWN VARIABLES ARE
- u}=50\mp@subsup{\textrm{ms}}{}{-1
- u}=50\mp@subsup{\textrm{ms}}{}{-1
- v}=10\mp@subsup{\textrm{ms}}{}{-1
- v}=10\mp@subsup{\textrm{ms}}{}{-1
- t=20s
- t=20s
AND WE ARE ASKED TO FIND DISTANCE,s.

```
    AND WE ARE ASKED TO FIND DISTANCE,s.
```

STEP 2

$$
\begin{aligned}
& \text { SO THE EQUATION THAT LINKS } u, v, t \text { AND } s \text { IS } \\
& \qquad s=\frac{(u+v)}{2} t
\end{aligned}
$$

STEP 3 NO REARRANGING IS REQUIRED SO WE SIMPLY PLUG IN THE VARIABLES:

$$
\mathrm{s}=\frac{(50+10)}{2} \times 20=30 \times 20=600 \mathrm{~m}
$$

Exam Tip

- This is arguably the most important section of this topic, you can always be sure there will be one, or more, questions in the exam about solving problems with the kinematic equations
- The best way to master this section is to practice as many questions as possible
EXAM PAPERS PRACTICE

2.1.8 Acceleration of Free Fall Experiment

Acceleration of Free Fall Experiment

- A common experiment to determine acceleration of a falling object which can be carried out in the lab

Apparatus

- Metre rule, ball bearing, electromagnet, electronic timer, trapdoor

Method

- When the current to the magnet switches off, the ball drops and the timer starts
- When the ball hits the trapdoor, the timer stops
- The reading on the timer indicates the time it takes for the ball to fall a distance, h
- This procedure is repeated several times for different values of h, in order to reduce random error
- The distance, h, can be measured using a metre rule as it would be preferable to use for distances between $20 \mathrm{~cm}-1 \mathrm{~m}$

Analysing data

- To find g, use the same steps as in the problem solving section
- The known quantities are
- Displacement $s=h$
- Time taken $=t$
- Initial velocity $u=0$
- Acceleration $a=g$
- The equation that links these quantities is
- $s=u t+1 / 2$ at 2
- $\mathrm{h}=1 / 2 \mathrm{gt}^{2}$
- Using this equation, deduce g from the gradient of the graph of h against t^{2}

Sources of error

- Systematic error: residue magnetism after the electromagnet is switched off may cause the time to be recorded as longer than it should be
- Random error: large uncertainty in distance from using a metre rule with a precision of 1 mm , or from parallax error

EXAM PAPERS PRACTICE

2.1.9 Projectile Motion

Projectile Motion

- The trajectory of an object undergoing projectile motion consists of a vertical component and a horizontal component
- These need to be evaluated separately
- Some key terms to know, and how to calculate them, are:
- Time of flight: how long the projectile is in the air
- Maximum height attained: the height at which the projectile is momentarily at rest
- Range: the horizontal distance travelled by the projectile

VERTICAL MOTION (\uparrow)
INITIAL SPEED, $u=u \sin \theta$
ACCELERATION, $\mathrm{a}=9.81 \mathrm{~ms}^{-2}$
DISPLACEMENT $=0$

TIME OF FLIGHT

$$
u=u \sin \theta \quad v=0 \quad a=-g \quad t=?
$$

THE EQUATION THAT RELATES THESE QUANTITIES IS

$$
\begin{array}{ll}
v=u+a t & \\
0=u \sin \theta-g t & \text { IF THE TIME TO MAXIMUM } \\
t=\frac{u \sin \theta}{g} & \text { HEIGHT IS } t, \\
2 t=\frac{2 u \sin \theta}{g} & \text { THEN THE TIME OF } \\
\text { FLIGHT IS } 2 t
\end{array}
$$

MAXIMUM HEIGHT ATTAINED

$u=u \sin \theta \quad v=0 \quad a=-g \quad H=?$
THE EQUATION THAT RELATES THESE QUANTITIES IS
$v^{2}=u^{2}+2 a s$
$0=(u \sin \theta)^{2}-2 g H$

$$
2 \mathrm{gH}=(u \sin \theta)^{2}
$$

$$
H=\frac{(u \sin \theta)}{2 g}
$$

RANGE (R)
HORIZONTAL MOTION (\rightarrow)
INITIAL SPEED, $u=u \cos \theta$
ACCELERATION, $a=0$
DISPLACEMENT $=R$

$u=u \cos \theta \quad t=\frac{2 u \sin \theta}{g} \quad a=0 \quad R=?$
THE EQUATION THAT RELATES THESE QUANTITIES IS

DISTANCE $=$ SPEED \times TIME
$R=(u \cos \theta) t$
$R=\frac{2 u^{2} \sin \theta \cos \theta}{g} \quad$ USING THE TRIG
IDENTITY:
$R=\frac{u^{2} \sin 2 \theta}{g}$
$2 \sin \theta \cos \theta=\sin 2 \theta$

How to find the time of flight, maximum height and range

- Remember: the only force acting on the projectile, after it has been released, is gravity
- There are three possible scenarios for projectile motion:
- Vertical projection
- Horizontal projection
- Projection at an angle
- Let's consider each in turn:
PAPERS PRACTICE

- Worked Example

To calculate vertical projection(free fall)
A science museum designed an experiment to show the fall of a feather in a vertical glass vacuum tube.

The time of fall from rest is 0.5 s .

What it the length of the tube, L?

```
IN THIS PROBLEM, WE ONLY NEED TO CONSIDER VERTICAL MOTION.
FIRST WE MUST LIST THE KNOWN VARIABLES.
\[
a=9.81 \mathrm{~ms}^{-2} \quad u=0 \quad t=0.5 s \quad L=?
\]
```

THE EQUATION THAT LINKS THESE VARIABLES IS

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& L=\frac{1}{2} g t^{2} \\
& L=\frac{1}{2} \times 9.81 \times 0.5^{2}=1.2 \mathrm{~m}
\end{aligned}
$$

? Worked Example

To calculate horizontal projection
A motorcycle stunt-rider moving horizontally takes off from a point 1.25 m above the ground, landing 10 m away as shown.

What was the speed at take-off?


```
IN THIS PROBLEM, WE NEED TO CONSIDER BOTH VERTICAL AND HORIZONTAL
MOTION. LET'S CONSIDER THE VERTICAL MOTION FIRST. THE KNOWN VARIABLES ARE
\[
\mathrm{s}=1.25 \mathrm{~m} \quad \mathrm{a}=9.81 \mathrm{~ms}^{-2} \quad \mathrm{u}=0 \quad \mathrm{t}=?
\]
```

THE EQUATION THAT LINKS THESE VARIABLES IS
$s=u t+\frac{1}{2} a t^{2}$
$s=\frac{1}{2} g t^{2}$
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~s}}{\mathrm{~g}}}$
$t=\sqrt{\frac{2 \times 1.25}{9.81}}=0.5 \mathrm{~s}$

```
NEXT LET'S CONSIDER THE HORIZONTAL MOTION.
THE KNOWN VARIABLES ARE
```

$$
\mathrm{s}=10 \mathrm{~m} \quad \mathrm{a}=0 \quad \mathrm{t}=0.5 \mathrm{~s} \quad u=?
$$

SINCE THE ACCELERATION IS ZERO, WE CAN USE

$$
\begin{aligned}
& \text { VELOCITY }=\frac{\text { DISPLACEMENT }}{\text { TIME }} \\
& v=\frac{10}{0.5}=20 \mathrm{~ms}^{-1}
\end{aligned}
$$

? Worked Example

To calculate projection at an angle
A ball is thrown from a point P with an initial velocity u of $12 \mathrm{~m} \mathrm{~s}^{-1}$ at 50° to the horizontal.

What is the value of the maximum height at Q ?


```
IN THIS PROBLEM, WE ONLY NEED TO CONSIDER VERTICAL MOTION
UP TO THE POINT Q. FIRST WE MUST LIST THE KNOWN VARIABLES
\[
u=12 \sin (50) \quad a=-9.81 \mathrm{~ms}^{-2} \quad v=0 \quad H=?
\]
```

THE EQUATION THAT LINKS THESE VARIABLES IS

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
& 2 a s=v^{2}-u^{2} \\
& s=\frac{\left(v^{2}-u^{2}\right)}{2 a} \\
& H=\frac{0-(12 \sin 50)^{2}}{2 \times(-9.81)} \\
& H=\frac{(12 \sin 50)^{2}}{19.62}=4.3 \mathrm{~m}
\end{aligned}
$$

Exam Tip

Make sure you don't make these common mistakes:

- Forgetting that deceleration is negative as the object rises
- Confusing the direction of $\sin \theta$ and $\cos \theta$
- Not converting units (mm, cm, km etc.) to metres

