EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.9 Further Functions \& Graphs

AA HL

2.9.1 Modulus Functions

Modulus Functions \& Graphs

What is the modulus function?

- The modulus function is defined by $f(x)=|x|$
- $|x|=\sqrt{X^{2}}$
- Equivalentlyit can be defined $|x|= \begin{cases}x & x \geq 0 \\ -X & x<0\end{cases}$
- Its domain is the set of all real values
- Its range is the set of all real non-negative values
- The modulus function gives the distance between 0 and x
- This is also called the absolute value of x

What are the key features of the modulus graph: $y=|x|$?

- The graph has a \boldsymbol{y}-intercept at $(0,0)$
- The graph has one root at $(0,0)$
- The graph has a vertex at $(0,0)$
- The graph is symmetrical about the \boldsymbol{y}-axis
- At the origin
- The function is continuous
- The function is not differentiable

What are the key features of the modulus graph: $y=a|x+p|+q$?

- Every mo dulus grap h which is formed bylinear transformations can be written in this form using keyfeatures of the modulus function
- $|a x|=|a||x|$
- For example: $|2 x+1|=2\left|x+\frac{1}{2}\right|$
- $|p-x|=|x-p|$
- For example: $|4-x|=|x-4|$
- The graph has a y-intercept when $x=0$
- The graph can have 0,1 or 2 roots
- If a and q have the same sign then there will be 0 roots
- If $q=0$ then there will be 1 root at $(-p, 0)$
- If a and q have different signs then there will be 2 roots at $\left(-p \pm \frac{q}{a}, 0\right)$
- The graph has a vertex at ($-p, q$)
- The graph is symmetrical about the line $\boldsymbol{x}=-\boldsymbol{p}$
- The value of adetermines the shape and the steep ness of the graph
- If ais positive the graph looks like V
- If ais negative the graph looks like \wedge
- The larger the value of |a| the steeper the lines
- At the vertex
- The function is continuous
- The function is not differentiable

2.9.2 Modulus Transformations

Modulus Transformations

How do Isketch the graph of the modulus of a function: $\boldsymbol{y}=|\boldsymbol{f}(x)|$?

- STEP 1: Keep the parts of the graph of $y=f(x)$ that are on or above the \boldsymbol{x}-axis
- STEP 2: Any parts of the graph below the x-axis get reflected in the x-axis anything

How do Isketch the graph of a function of a modulus: $\boldsymbol{y}=\boldsymbol{f}(|\boldsymbol{x}|)$?

- STEP 1: Keep the graph of $y=f(x)$ only for $x \geq 0$
- STEP 2: Reflect this in the \boldsymbol{y}-axis

What is the difference between $y=|f(x)|$ and $y=f(|x|)$?

- The graph of $y=|f(x)|$ never goes below the \boldsymbol{x}-axis
- It does not have to have any lines of symmetry
- The graph of $y=f(|x|)$ is always symmetrical about the \boldsymbol{y}-axis
- It can go below the y-axis

When multiple transformations are involved howdo Idetermine the order?

- The transformations outside the function follow the same order as the order of operations
- $y=|a f(x)+b|$
- Deal with the a then the b then the modulus
- $y=a|f(x)|+b$
- Deal with the modulus then the athen the b
- The transformations inside the functionare in the reverse order to the order of operations
- $y=f(|a x+b|)$
- Deal with the modulus then the b then the a
- $y=f(a|x|+b)$
- Deal with the b then the a then the modulus

(9) Exam Tip

- When sketching one of these transformations in an exam question make sure that the graphs do not looksmooth at the points where the original graph have been reflected
- For $y=|f(x)|$ the graph should look "sharp" at the points where it has been reflected on the x-axis
- For $y=f(|X|)$ the graph should look "sharp" at the point where it has been reflected on the y-axis

Worked example

The diagram below shows the graph of $y=f(x)$.

(a) Sketch the graph of $y=|f(x)|$.

If the graph is on or above the x-axis then it stays the same If the graph is below the x-axis the it is reflected in the x-axis

A stays the same $(-1,5)$
B becomes $(3,3)$
(b) Sketch the graph of $y=f(|x|)$.
keep the graph for $x \geqslant 0$
Reflect this in the y-axis
A disappears
Exa
Copyright
© 2024 Exam Papers Practice

B stays the same $(3,-3)$

Exam Papers Practice

2.9.3 Modulus Equations \& Inequalities

Modulus Equations

How do I find the modulus of a function?

- The modulus of a function $f(x)$ is
- $|f(x)|=\left\{\begin{array}{cc}f(x) & f(x) \geq 0 \\ -f(x) & f(x)<0\end{array}\right.$ or
- $|f(x)|=\sqrt{[f(x)]^{2}}$

How do Isolve modulus equations graphically?

- To solve $|f(x)|=g(x)$ graphic ally
- Draw $y=|f(x)|$ and $y=g(x)$ into your GDC
- Find the x-coordinates of the points of intersection

How do Isolve modulus equations analytically?

- To solve $|f(x)|=g(x)$ analytic ally
- Formtwo equations
- $f(x)=g(x)$
- $f(x)=-g(x)$
- Solve both equations
- Check solutions work in the original equation
- For example: $x-2=2 x-3$ has solution $x=1$
- But $|(1)-2|=1$ and $2(1)-3=-1$
- So $x=1$ is not a solution to $|x-2|=2 x-3$

Solve for \boldsymbol{X} :

a) $\left|\frac{2 x+3}{2-x}\right|=5$

Analytically
Split into two equations

$$
\frac{2 x+3}{2-x}= \pm 5
$$

Solve individually

$$
\begin{array}{l|l}
\frac{2 x+3}{2-x}=5 & \frac{2 x+3}{2-x}=-5 \\
2 x+3=10-5 x & 2 x+3=5 x-10 \\
7 x=7 & 13=3 x \\
x=1 & x=\frac{13}{3}
\end{array}
$$

Check:
Check:
$\left|\frac{2(1)+3}{2-(1)}\right|=5 \checkmark \quad\left|\frac{2\left(\frac{13}{3}\right)+3}{2-\left(\frac{13}{3}\right)}\right|=5 \checkmark$

$$
x=1 \text { or } x=\frac{13}{3}
$$

b) $\quad|3 x-1|=5 x-11$.

Graphically
Sketch the two graphs
$y=5 \quad\left|y=\left|\frac{2 x+3}{2-x}\right|\right.$

Find the points of intersection

$$
(1,5) \quad(4.33,5)
$$

Choose the x-coordinates

Exam Papa
Analytically

$$
\begin{aligned}
& \text { Split into two equations } \\
& 3 x-1= \pm(5 x-11)
\end{aligned}
$$

Solve individually

$$
\begin{array}{c|l}
3 x-1=5 x-11 & 3 x-1=11-5 x \\
10=2 x & 8 x=12 \\
x=5 & x=1.5
\end{array}
$$

Check:
$\begin{aligned} & |3(5)-1|=14 \\ & 5(5)-11=14\end{aligned}, \quad \begin{aligned} & |3(1.5)-1|=3.5 \\ & 5(1.5)-11=-3.5\end{aligned} x$
$x=5$

$$
x=5
$$

Copyright
© 2024 Exam Pap

Graphically
Sketch the two graphs

Find the points of intersection

$$
(5,14)
$$

Choose the x-coordinates

$$
x=5
$$

Modulus Inequalities

How do Isolve modulus inequalities analytically?

- To solve any modulus inequality
- First solve the corresponding modulus equation
- Remembering to check whether solutions are valid
- Then use a graphic al metho d ora sign table to find the intervals that satisfy the inequality
- Another method is to solve two pairs of inequalities
- For $|f(x)|<g(x)$ solve:
- $f(x)<g(x)$ when $f(x) \geq 0$
- $f(x)>-g(x)$ when $f(x) \leq 0$
- For $|f(x)|>g(x)$ solve:
- $f(x)>g(x)$ when $f(x) \geq 0$
- $f(x)<-g(x)$ when $f(x) \leq 0$

- Exam Tip

- If a question on this appears on a calculatorpaper then use the same ideas as solving other inequalities
- Sketch the graphs and find the intersections

Exam Papers Practice Copyright
© 2024 Exam Papers Practice

Worked example

Solve the following inequalities for \boldsymbol{X}.
a) $|2 x-1|<4$

Solve for $2 x-1 \geqslant 0$
For $x \geqslant \frac{1}{2}: 2 x-1<4 \quad \Rightarrow x<\frac{5}{2} \quad \therefore \frac{1}{2} \leqslant x<\frac{5}{2}$
Solve for $2 x-1 \leqslant 0$
For $x \leq \frac{1}{2}: \quad 2 x-1>-4 \quad \Rightarrow x>-\frac{3}{2} \quad \therefore-\frac{3}{2}<x \leq \frac{1}{2}$
Combine inequalities $-\frac{3}{2}<x<\frac{5}{2}$
b) $\quad|x+1|<|2 x+3|$

Solve the corresponding equation

$$
|x+1|=|2 x+3| \Rightarrow x+1= \pm(2 x+3)
$$

Solve
$x+1=2 x+3$
$x=-2$
Check $|(-2)+1|=1 \quad\left|\left(-\frac{4}{3}\right)+1\right|=\frac{1}{3}$
$|2(-2)+3|=1^{\prime} \quad\left|2\left(-\frac{4}{3}\right)+3\right|=\frac{1}{3}^{2}$
© 2024 Exam Papellise a ${ }^{\text {a }}$ sign table

Write solution $x<-2$ or $x>-\frac{4}{3}$

2.9.4 Reciprocal \& Square Transformations

ReciprocalTransformations

What effects do reciprocaltransformations have on the graphs?

- The x-coordinates stay the same
- The \boldsymbol{y}-coordinates change
- Their values become theirreciprocals
- The coordinates (x, y) become $\left(x, \frac{1}{y}\right)$ where $y \neq 0$
- If $y=0$ then a vertic al asymptote goes through the original coord inate
- Points that lie on the line $\boldsymbol{y}=1$ or the line $\boldsymbol{y}=-1$ stay the same

How do Isketch the graph of the reciprocal of a function: $y=1 / f(x)$?

- Sketch the reciprocal transformation by considering the different features of the original graph
- Considerkeypoints on the original graph
- If $\left(x_{l}, y_{l}\right)$ is a point on $y=f(x)$ where $y_{i} \neq 0$
- $\left(x_{1}, \frac{1}{y_{1}}\right)$ is a point on $y=\frac{1}{f(x)}$
- If $\left|y_{1}\right|<1$ then the point gets further away from the x-axis
- If $\left|y_{1}\right|>1$ then the point gets closer to the x-axis
- If $y=f(x)$ has a \boldsymbol{y}-intercept at $(0, c)$ where $c \neq 0$
- The reciprocal graph $y=\frac{1}{f(x)}$ has a y-intercept at $\left(0, \frac{1}{c}\right)$
- If $y=f(x)$ has a root at $(a, 0)$
- The reciprocal graph $y=\frac{1}{f(x)}$ has a vertical asymptote at $x=a$
- If $y=f(x)$ has a vertical asymptote at $X=a$
- The recipro cal graph $y=\frac{1}{f(x)}$ has a discontinuity at $(a, 0)$
- The discontinuity will look like a root
- If $y=f(x)$ has a lo cal maximum at $\left(x_{1}, y_{1}\right)$ where $y_{1} \neq 0$
- The reciprocal graph $y=\frac{1}{f(x)}$ has a local minimum at $\left(x_{1}, \frac{1}{y_{1}}\right)$
- If $y=f(x)$ has a lo cal minimum at $\left(x_{1}, y\right)$ where $y \neq 0$
- The recipro cal graph $y=\frac{1}{f(x)}$ has a local maximum at $\left(x_{1}, \frac{1}{y_{1}}\right)$
- Considerkeyregions on the original graph
- If $y=f(x)$ is positive then $y=\frac{1}{f(x)}$ is positive
- If $y=f(x)$ is negative then $y=\frac{1}{f(x)}$ is negative
- If $y=f(x)$ is increasing then $y=\frac{1}{f(x)}$ is decreasing
- If $y=f(x)$ is decreasing then $y=\frac{1}{f(x)}$ is increasing
- If $y=f(x)$ has a horizontal asymptote at $y=k$
- $y=\frac{1}{f(x)}$ has a horizontal asymptote at $y=\frac{1}{k}$ if $\boldsymbol{k \neq 0}$
- $y=\frac{1}{f(x)}$ tends to $\pm \infty$ if $k=0$
- If $y=f(x)$ tends to $\pm \infty$ as x tends to $+\infty$ or $-\infty$
- $y=\frac{1}{f(x)}$ has a horizontal asymptote at $y=0$

Worked example

The diagram below shows the graph of $y=f(x)$ which has a local maximum at the point A.

\square Sketch the graph of $y=\frac{1}{f(x)}$.

Copyright

© 2024 Exam Papers Practice
A becomes local minimum $\left(-5,-\frac{1}{2}\right)$
Vertical asymptote becomes root $(2,0)$
B becomes $\left(0,-\frac{1}{4}\right)$
(becomes vertical asymptote $x=10$ Horizontal asymptote $y=-1$ remains

Square Transformations

What effects do square transformations have on the graphs?

- The effects are similar to the transformation $\boldsymbol{y}=|f(x)|$
- The parts below the \boldsymbol{x}-axis are reflected
- The vertical distance between a point and the x-axis is squared
- This has the effect of smoothing the curve at the x-axis
- $y=[f(x)]^{2}$ is never below the x-axis
- The x-coordinates stay the same
- The \boldsymbol{y}-coordinates change
- Their values are squared
- The coordinates (x, y) become $\left(x, y^{2}\right)$
- Points that lie on the \boldsymbol{x}-axis or the line $\boldsymbol{y}=1$ stay the same

How do Isketch the graph of the square of a function: $y=[f(x)]^{2}$?

- Sketch the square transformation byconsidering the different features of the original graph
- Considerkeypoints on the original graph
- If $\left(x_{1}, y_{7}\right)$ is a point on $y=f(x)$
- $\left(x_{1}, y_{1}^{2}\right)$ is a point on $y=[f(x)]^{2}$
- If $|y|<1$ then the point gets closer to the \boldsymbol{x}-axis
- If $\left|y_{1}\right|>1$ then the point gets further away from the \boldsymbol{x}-axis
- If $y=f(x)$ has a \boldsymbol{y}-intercept at $(0, c)$
- The square graph $y=[f(x)]^{2}$ has a y-intercept at $\left(0, c^{2}\right)$
- If $y=f(x)$ has a root at $(a, 0)$
- The square graph $y=[f(x)]^{2}$ has a root and turning point at $(a, 0)$
- If $y=f(x)$ has a vertical asymptote at $\boldsymbol{X}=\boldsymbol{a}$
- The square graph $y=[f(x)]^{2}$ has a vertical asymptote at $X=a$
- If $y=f(x)$ has a lo cal maximum at $\left(x_{1}, y_{7}\right)$
- The square graph $y=[f(x)]^{2}$ has a local maximum at $\left(x_{1}, y_{l}^{2}\right)$ if $y_{l}>0$
- The square graph $y=[f(x)]^{2}$ has a local minimum at $\left(x_{1}, y_{l}^{2}\right)$ if $y_{1} \leq 0$
- If $y=f(x)$ has a local minimum at $\left(x_{1}, y_{7}\right)$
- The square graph $y=[f(x)]^{2}$ has a local minimum at $\left(x_{1}, y_{l}^{2}\right)$ if $y_{1} \geq 0$
- The square graph $y=[f(x)]^{2}$ has a local maximum at $\left(x_{1}, y_{l}^{2}\right)$ if $y_{l}<0$

O Exam Tip

- In an exam question when sketching $y=[f(x)]^{2}$ make it clear that the points where the new graph touches the x-axis are smooth
- This will make it clear to the examiner that you understand the difference between the roots of the graphs $y=|f(x)|$ and $y=[f(x)]^{2}$

Worked example

The diagram below shows the graph of $y=f(x)$ which has a local maximum at the point A.

A becomes local minimum $(-5,4)$ Vertical asymptote $x=2$ remains B becomes $(0,16)$
(becomes local minimum
Horizontal asymptote becomes $y=1$

