

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2.9 Further Functions & Graphs

IB Maths - Revision Notes

AA HL

2.9.1 Modulus Functions

Modulus Functions & Graphs

What is the modulus function?

- The modulus function is defined by f(x) = |x|
 - $|x| = \sqrt{x^2}$
 - Equivalently it can be defined $|X| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$
- Its domain is the set of all real values
- Its range is the set of all real non-negative values
- The modulus function gives the **distance** between 0 and x
 - This is also called the **absolute value** of x

What are the key features of the modulus graph: y = |x|?

- The graph has a *y*-intercept at (0, 0)
- The graph has **one root** at (0, 0)
- The graph has a **vertex** at (0, 0)
- The graph is **symmetrical** about the **y-axis**
- At the origin
 - The function is **continuous**
 - The function is not differentiable
 Cam Papers Practice

Copyright © 2024 Exam Papers Practice

What are the key features of the modulus graph: y = a|x + p| + q?

Every modulus graph which is formed by linear transformations can be written in this form using keyfeatures of the modulus function

rs Practice

- |ax| = |a||x|
 - ax = |a||x|For example: $|2x + 1| = 2|x + \frac{1}{2}|$

|p - x| = |x - p|

• For example: |4 - x| = |x - 4|

 \odot 20.24 The graph has a *y*-intercept when x=0

- The graph can have 0,1or 2 **roots**
 - If a and q have the same sign then there will be 0 roots
 - If q = 0 then there will be **1 root** at (-p, 0)
 - If *a* and *q* have different signs then there will be 2 roots at $\left(-p \pm \frac{q}{a}, 0\right)$
- The graph has a vertex at (-p, q)
- The graph is symmetrical about the line x = -p
- The value of a determines the **shape** and the **steepness** of the graph
 - If a is positive the graph looks like V
 - If a is negative the graph looks like Λ
 - The larger the value of |a| the steeper the lines
- At the **vertex**
 - The function is continuous
 - The function is not differentiable

2.9.2 Modulus Transformations

Modulus Transformations

How do I sketch the graph of the modulus of a function: y = |f(x)|?

- STEP 1: Keep the parts of the graph of y = f(x) that are on or above the x-axis
- STEP 2: Any parts of the graph below the x-axis get reflected in the x-axis anything

How do I sketch the graph of a function of a modulus: y = f(|x|)?

- STEP 1: Keep the graph of y = f(x) only for $x \ge 0$
- STEP 2: Reflect this in the y-axis

What is the difference between y = |f(x)| and y = f(|x|)?

- The graph of y = |f(x)| never goes below the x-axis
 - It does not have to have any lines of symmetry
- The graph of y = f(|x|) is always symmetrical about the y-axis
 - It can go below the y-axis

When multiple transformations are involved how do I determine the order?

- The transformations outside the function follow the same order as the order of operations
 - V = |af(x) + b|
 - Deal with the *a* then the *b* then the modulus
 - y = a|f(x)| + b
 - Deal with the modulus then the a then the b

The transformations inside the function are in the reverse order to the order of operations

Copyright y = f(|ax + b|)

© 2024 Exam Papeal with the modulus then the b then the a

- y = f(a|x| + b)
 - Deal with the *b* then the *a* then the modulus

😧 Exam Tip

- When sketching one of these transformations in an exam question make sure that the graphs do not look smooth at the points where the original graph have been reflected
 - For y = |f(x)| the graph should look "sharp" at the points where it has been reflected on the *x*-axis
 - For y = f(|x|) the graph should look "sharp" at the point where it has been reflected on the y-axis

The diagram below shows the graph of y = f(x).

(a) Sketch the graph of y = |f(x)|.

If the graph is on or above the x-axis then it stays the same If the graph is below the x-axis the it is reflected in the x-axis

2.9.3 Modulus Equations & Inequalities

Modulus Equations

How do I find the modulus of a function?

• The modulus of a function f(x) is

$$|f(x)| = \begin{cases} f(x) & f(x) \ge 0\\ -f(x) & f(x) < 0 \end{cases}$$

or
$$|f(x)| = \sqrt{[f(x)]^2}$$

How do I solve modulus equations graphically?

- To solve |f(x)| = g(x) graphically
 - Draw y = |f(x)| and y = g(x) into your GDC
 - Find the x-coordinates of the points of intersection

How do I solve modulus equations analytically?

- To solve |f(x)| = g(x) analytically
 - Form two equations
 - f(x) = g(x)
 - f(x) = -g(x)
 - Solve both equations
 - Check solutions work in the original equation
 - For example: x 2 = 2x 3 has solution x = 1
 - But |(1) 2| = 1 and 2(1) 3 = -1

s Practice

Copyright So x = 1 is not a solution to |x - 2| = 2x - 3© 2024 Exam Papers Practice

Page 7 of 14 For more help visit our website www.exampaperspractice.co.uk

Modulus Inequalities

How do I solve modulus inequalities analytically?

- To solve **any** modulus inequality
 - First solve the corresponding modulus equation
 - Remembering to check whether solutions are valid
 - Then use a graphical method or a sign table to find the intervals that satisfy the inequality
- Another method is to solve **two pairs of inequalities**
 - For | f(x) | < g(x) solve:
 - f(x) < g(x) when $f(x) \ge 0$
 - f(x) > -g(x) when $f(x) \le 0$
 - For | f(x) | > g(x) solve:
 - f(x) > g(x) when $f(x) \ge 0$
 - f(x) < -g(x) when $f(x) \le 0$

💽 Exam Tip

- If a question on this appears on a calculator paper then use the same ideas as solving other inequalities
 - Sketch the graphs and find the intersections

Exam Papers Practice

© 2024 Exam Papers Practice

Solve the following inequalities for X.

a)
$$|2x-1| < 4$$

Solve for $2x-1 \ge 0$
For $x \ge \frac{1}{2}$: $2x-1 < 4$ $\Rightarrow x < \frac{5}{2}$ $\therefore \frac{1}{4} \le x < \frac{5}{2}$
Solve for $2x-1 \le 0$
For $x \le \frac{1}{2}$: $2x-1 \ge -4$ $\Rightarrow x \ge -\frac{3}{2}$ $\therefore -\frac{3}{2} < x \le \frac{1}{2}$
(combine inequalities $-\frac{3}{2} < x < \frac{5}{2}$
b) $|x+1| < |2x+3|$
Solve the corresponding equation
 $|x+1| = |2x+3|$ $\Rightarrow x+1 = \pm (2x+3)$
Solve $x+1 = 2x+3$ $x+1 = \pm (2x+3)$
Solve $x+1 = 2x+3$ $x = -\frac{4}{3}$
(heck $|(2)+1| = 1$ $|(\frac{4}{3})+1| = \frac{1}{3}$ Practice
(heck $|(2)+3| = 1$ $|(\frac{4}{3})+3| = \frac{1}{3}$ Practice
(heck $x = -3$ $|(\frac{1}{2}x+3)| = \frac{1}{2}$ $|(\frac{1}{2}x+3)| = \frac{1}{3}$ $|(\frac{1}{2}x+3)| = \frac{1}{3}$
Write solution $\frac{x < -2 \text{ or } x > -\frac{4}{3}}{x < -\frac{2}{3}}$

2.9.4 Reciprocal & Square Transformations

Reciprocal Transformations

What effects do reciprocal transformations have on the graphs?

- The x-coordinates stay the same
- The y-coordinates change
 - Their values become their reciprocals

The coordinates (x, y) become
$$\left(X, \frac{1}{y}\right)$$
 where $y \neq 0$

- If y=0 then a vertical asymptote goes through the original coordinate
- Points that lie on the line y=1 or the line y=-1 stay the same

How do I sketch the graph of the reciprocal of a function: y = 1/f(x)?

Sketch the reciprocal transformation by considering the different features of the original graph

ractice

- Consider keypoints on the original graph
 - If (x_1, y_1) is a point on y = f(x) where $y_1 \neq 0$

•
$$\left(x_1, \frac{1}{y_1}\right)$$
 is a point on $y = \frac{1}{f(x)}$

- If |y₁| < 1 then the point gets further away from the x-axis</p>
- If |y₁| > 1 then the point gets closer to the x-axis
- If y = f(x) has a **y-intercept** at (0, c) where $c \neq 0$

Copyright

© 2024 Exam Papers Practice • The reciprocal graph $y = \frac{1}{f(x)}$ has a *y*-intercept at $\left(0, \frac{1}{c}\right)$

- If y = f(x) has a root at (a, 0)
 - The reciprocal graph $y = \frac{1}{f(x)}$ has a **vertical asymptote** at x = a
- If y = f(x) has a vertical asymptote at X = a

• The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a **discontinuity** at (a, 0)

- The discontinuity will look like a root
- If y = f(x) has a **local maximum** at (x_1, y_1) where $y_1 \neq 0$
 - The reciprocal graph $y = \frac{1}{f(x)}$ has a local minimum at $\begin{pmatrix} x_1, \frac{1}{y_1} \end{pmatrix}$
- If y = f(x) has a **local minimum** at (x_1, y_1) where $y_1 \neq 0$

• The reciprocal graph
$$y = \frac{1}{f(x)}$$
 has a local maximum at $\begin{pmatrix} x_1, \frac{1}{y_1} \end{pmatrix}$

1

1

ractice

Consider key regions on the original graph

• If
$$y = f(x)$$
 is positive then $y = \frac{1}{f(x)}$ is positive

• If
$$y = f(x)$$
 is negative then $y = \frac{1}{f(x)}$ is negative

• If
$$y = f(x)$$
 is increasing then $y = \frac{1}{f(x)}$ is decreasing

• If y = f(x) is **decreasing** then $y = \frac{1}{f(x)}$ is **increasing**

If y = f(x) has a horizontal asymptote at y = k

• If y = f(x) tends to $\pm \infty$ as x tends to $+\infty$ or $-\infty$

•
$$y = \frac{1}{f(x)}$$
 has a horizontal asymptote at $y = 0$

The diagram below shows the graph of y = f(x) which has a local maximum at the point A.

Square Transformations

What effects do square transformations have on the graphs?

- The effects are similar to the transformation y = |f(x)|
 - The parts below the x-axis are reflected
 - The vertical distance between a point and the *x*-axis is squared
 - This has the effect of **smoothing the curve** at the *x*-axis
- $y = [f(x)]^2$ is never below the x-axis
- The *x*-coordinates stay the same
- The y-coordinates change
 - Their values are **squared**
- The coordinates (x, y) become (x, y²)
 - Points that lie on the x-axis or the line y=1 stay the same

How do I sketch the graph of the square of a function: $y = [f(x)]^2$?

- Sketch the square transformation by considering the different features of the original graph
 - Consider key points on the original graph
 - If (x_{1}, y_{1}) is a point on y = f(x)
 - (x_1, y_1^2) is a point on $y = [f(x)]^2$
 - If |y| <1 then the point gets closer to the x-axis</p>
 - If |y₁| > 1 then the point gets further away from the x-axis
 - If y = f(x) has a y-intercept at (0, c)
 - The square graph $y = [f(x)]^2$ has a y-intercept at $(0, c^2)$
 - If y = f(x) has a root at (a, 0)
 - The square graph $y = [f(x)]^2$ has a **root** and **turning point** at (a, 0)
 - If y = f(x) has a **vertical asymptote** at x = a

© 2024 Exam P The square graph $y = [f(x)]^2$ has a vertical asymptote at x = a

- If y = f(x) has a **local maximum** at (x_{1}, y_{1})
 - The square graph $y = [f(x)]^2$ has a local maximum at (x_h, y_l^2) if $y_l > 0$
 - The square graph $y = [f(x)]^2$ has a local minimum at $(x_h y_t^2)$ if $y_t \le 0$
- If y = f(x) has a **local minimum** at (x_{j}, y_{j})
 - The square graph $y = [f(x)]^2$ has a local minimum at $(x_h y_l^2)$ if $y_l \ge 0$
 - The square graph $y = [f(x)]^2$ has a local maximum at (x_1, y_1^2) if $y_1 < 0$

💽 Exam Tip

- In an exam question when sketching $y = [f(x)]^2$ make it clear that the points where the new graph touches the *x*-axis are smooth
 - This will make it clear to the examiner that you understand the difference between the roots of the graphs y = |f(x)| and $y = [f(x)]^2$

The diagram below shows the graph of y = f(x) which has a local maximum at the point A.

