

2.8 Inequalities

Contents

✤ 2.8.1 Solving Inequalities Graphically

ty

Anas Example

★ 2.8.2 Polynomial Inequalities

II Rights Reserved

2.8.1 Solving Inequalities Graphically

Solving Inequalities Graphically

How can I solve inequalities graphically?

- Consider the inequality $f(x) \le g(x)$, where f(x) and g(x) are functions of x
 - if we move g(x) to the LHS we get
 - $f(x) g(x) \le 0$
- Solve f(x) g(x) = 0 to find the zeros of f(x) g(x)
 - These correspond to the x-coordinates of the points of intersection of the graphs y = f(x) and y = g(x)
- To solve the inequality we can use a **graph**
 - Graph y = f(x) g(x) and label its zeros
 - Hence find the intervals of x that satisfy the inequality $f(x) g(x) \le 0$
 - These are the intervals which satisfies the original inequality $f(x) \le g(x)$
 - This method is particularly useful when finding the intersections between the functions is difficult due to needing large x and y windows on your GDC

Be careful when rearranging inequalities!

- Remember to flip the sign of the inequality when you multiply or divide both sides by a negative number
 - e. $1 < 2 \rightarrow [\text{times both sides by } (-1)] \rightarrow -1 > -2 (\text{sign flips})$
- Never multiply or divide by a variable as this could be positive or negative
 - You can only multiply by a term if you are certain it is always positive (or always negative)
 - Such as X^2 , |X|, e^X
- Some functions reverse the inequality
 - Taking reciprocals of positive values

$$0 < x < y \Rightarrow \frac{1}{x} > \frac{1}{y}$$

Taking logarithms when the base is 0 < a < 1</p>

•
$$0 < x < y \Rightarrow \log_a(x) > \log_a(y)$$

• The safest way to rearrange is simply to add & subtract to move all the terms onto one side

2.8.2 Polynomial Inequalities

Polynomial Inequalities

How do I solve polynomial inequalities?

- STEP 1: Rearrange the inequality so that one of the sides is equal to zero
 - For example: $P(x) \le 0$
- **STEP 2**: Find the **roots** of the polynomial
 - You can do this by factorising or using GDC to solve P(x) = 0
- **STEP 3**: Choose one of the following methods:
- Graph method
 - Sketch a graph of the polynomial (with or without a GDC)
 - Choose the intervals for x corresponding to the sections of the graph that satisfy the inequality
 - For example: for $P(x) \le 0$ you would want the sections below the x-axis
- Sign table method
 - If you are unsure how to sketch a polynomial graph then this method is best
 - Split the real numbers into the possible intervals using the roots
 - If the roots are a and b then the intervals would be x < a, a < x < b, x > b
 - Test a value from each interval using the inequality
 - Choose a value within an interval and substitute into P(x) to determine if it is positive or negative
 - Alternatively if the polynomial is factorised you can determine the sign of each factor in each interval
 - An odd number of negative factors in an interval will mean the polynomial is negative on that interval
 - If the value satisfies the inequality then that interval is part of the solution

Solve the inequality $x^3 + 2x^2 > x + 2$ using an algebraic method.

