铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.8 Inequalities

AA HL

Exam Papers Practice

2.8.1 Solving Inequalities Graphically

Solving Inequalities Graphically

How can Isolve inequalities graphically?

- Consider the inequality $f(x) \leq g(x)$, where $f(x)$ and $g(x)$ are functions of x
- if we move $\boldsymbol{g}(\boldsymbol{x})$ to the LHS we get
- $f(x)-g(x) \leq 0$
- Solve $f(x)-g(x)=0$ to find the zeros of $f(x)-g(x)$
- These correspond to the x-coordinates of the points of intersection of the graphs $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ and $y=g(x)$
- To solve the inequality we can use a graph
- Graph $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{g}(\boldsymbol{x})$ and label its zeros
- Hence find the intervals of x that s atisfy the inequality $f(x)-g(x) \leq 0$
- These are the intervals which satisfies the original inequality $f(x) \leq g(x)$
- This method is particularly useful when finding the intersections between the functions is difficult due to need ing large x and y wind ows on your GDC

Becareful when rearranging inequalities!

- Remember to flip the sign of the inequality when you multiply or divide both sides by a negat ive number
- e. $\mathbf{1}<\mathbf{2} \rightarrow$ [times both sides by (-1)] $\rightarrow \mathbf{- 1}>\mathbf{- 2}$ (sign flips)
- Never multiply or divide by a variable as this could be positive or negative
- You can only multiply by a term if you are certain it is always po sitive (or always negative)
- Such as $X^{2},|X|, \mathrm{e}^{X}$
- Some functions reverse the inequality
- Taking reciprocals of positive values
- $0<x<y \Rightarrow \frac{1}{x}>\frac{1}{y}$
- Taking lo garithms when the base is $0<a<1$
- $0<x<y \Rightarrow \log _{a}(x)>\log _{a}(y)$
- The safest way to rearrange is simply to add \& subtract to move all the terms onto one side

Exam Papers Practice

Worked example

Use a GDC to solve the inequality $2 x^{3}<x^{5}-2 x$.

Rearrange to get one side as zero
$x^{5}-2 x^{3}-2 x>0$
On GDC sketch $y=x^{5}-2 x^{3}-2 x$ and find zeros
Identify the sections where

Exam Papers
Copyright
© 2024 Exam Papers Practice

2.8.2 Polynomial Inequalities

Polynomial Inequalities

How do Isolve polynomial inequalities?

- STEP 1: Rearrange the inequality so that one of the sides is equal to zero
- For example: $P(x) \leq 0$
- STEP 2: Find the roots of the polynomial
- You can do this by factorising or using GDC to solve $P(x)=0$
- STEP 3: Choose one of the following methods:
- Graphmethod
- Sketch a graph of the polynomial (with or without a GDC)
- Choose the intervals for x corresponding to the sections of the graph that satisfy the inequality
- For example: for $P(x) \leq 0$ you would want the sections below the x-axis
- Sign table method
- If you are unsure how to sketch a polyno mial graph then this metho d is best
- Split the real numbers into the possible intervals using the roots
- If the roots are a and b then the intervals would be $x<a, a<x<b, x>b$
- Test a value from each interval using the inequality
- Choose a value within an interval and substitute into $P(x)$ to determine if it is positive or negative
- Alternatively if the polynomial is factorised you can determine the sign of each factor in each interval
- An odd number of negative factors in an interval will mean the polynomial is negative on that interval
- If the value satisfies the inequality then that interval is part of the solution

O Exam Tip

- In exams most solutions will be intervals but some could be a single point
- Forexample: Solution to $(x-3)^{2} \leq 0$ is $x=3$

Exam Papers Practice

Worked example

Solve the inequality $X^{3}+2 x^{2}>x+2$ using an algebraic method.

Rearrange $x^{3}+2 x^{2}-x-2>0$

$$
\text { Let } P(x)=x^{3}+2 x^{2}-x-2
$$

Find a factor $P(1)=0 \quad \therefore(x-1)$ is a factor
Factorise $\quad(x-1)\left(x^{2}+3 x+2\right)>0 \quad$ Compare coefficients or use division

$$
(x-1)(x+1)(x+2)>0
$$

Find the roots $1,-1,-2$
Construct a sign table

| For $x<-2:$ | For $-2<x<-1:$ | For $-1<x<1:$ | For $x>1:$ |
| :--- | :--- | :--- | :--- | :--- |
| $(x+2)<0$ | $(x+2)>0$ | $(x+2)>0$ | $(x+2)>0$ |
| $(x+1)<0$ | $(x+1)<0$ | $(x+1)>0$ | $(x+1)>0$ |
| $(x-1)<0$ | $(x-1)<0$ | $(x-1)<0$ | $(x-1)>0$ |
| $\therefore P(x)<0$ | $\therefore P(x)>0$ | $\therefore P(x)<0$ | $\therefore P(x)>0$ |

Choose the regions that satisfy the inequality
© 2024 Exam Papers Practice

$$
-2<x<-1 \text { or } x>1
$$

