

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2.8 Inequalities

IB Maths - Revision Notes

AA HL

2.8.1 Solving Inequalities Graphically

Solving Inequalities Graphically

How can I solve inequalities graphically?

- Consider the inequality $f(x) \le g(x)$, where f(x) and g(x) are functions of x
 - if we move g(x) to the LHS we get
 - $f(x) g(x) \le 0$
- Solve *f*(*x*) *g*(*x*) = 0 to find the zeros of *f*(*x*) *g*(*x*)
 - These correspond to the x-coordinates of the points of intersection of the graphs y = f(x) and y = g(x)
- To solve the inequality we can use a **graph**
 - Graph y = f(x) g(x) and labelits zeros
 - Hence find the intervals of x that satisfy the inequality f(x) g(x) ≤ 0
 These are the intervals which satisfies the original inequality f(x) ≤ g(x)
 - This method is particularly useful when finding the intersections between the functions is difficult due to needing large x and y windows on your GDC

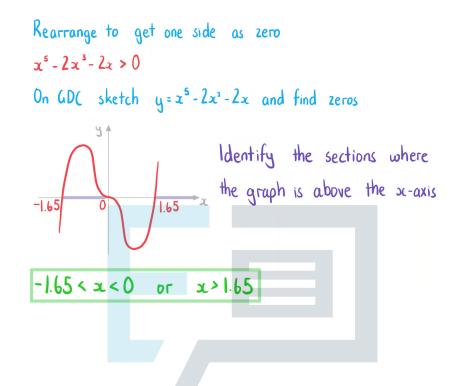
Be careful when rearranging inequalities!

- Remember to flip the sign of the inequality when you multiply or divide both sides by a negative number
 - e.1 < 2 \rightarrow [times both sides by (-1)] \rightarrow -1 > -2 (sign flips)
- Never multiply or divide by a variable as this could be positive or negative
 - You can only multiply by a term if you are certain it is always positive (or always negative)

ers Practice

- Such as X^2 , |X|, e^X
- Some functions reverse the inequality
 - Taking reciprocals of positive values

• $0 < x < y \Rightarrow \frac{1}{x} > \frac{1}{y}$


© 2024 Exam Papers Practice Taking logarithms when the base is 0 < a < 1

- $0 < x < y \Rightarrow \log_a(x) > \log_a(y)$
- The safest way to rearrange is simply to add & subtract to move all the terms onto one side

Worked example

Use a GDC to solve the inequality $2x^3 < x^5 - 2x$.

Exam Papers Practice

© 2024 Exam Papers Practice

2.8.2 Polynomial Inequalities

Polynomial Inequalities

How do I solve polynomial inequalities?

- STEP 1: Rearrange the inequality so that one of the sides is equal to zero
 - For example: $P(x) \le 0$
- **STEP 2**: Find the **roots** of the polynomial
 - You can do this by factorising or using GDC to solve P(x) = 0
- **STEP 3**: Choose one of the following methods:
- Graphmethod
 - Sketch a graph of the polynomial (with or without a GDC)
 - Choose the intervals for x corresponding to the sections of the graph that satisfy the inequality
 - For example: for $P(x) \le 0$ you would want the sections below the x-axis
- Signtable method
 - If you are unsure how to sketch a polynomial graph then this method is best
 - Split the real numbers into the possible intervals using the roots
 - If the roots are a and b then the intervals would be x<a, a < x < b, x > b
 - **Test a value** from each interval using the inequality
 - Choose a value within an interval and substitute into P(x) to determine if it is positive or negative
 - Alternatively if the polynomial is factorised you can determine the sign of each factor in each interval
 - An odd number of negative factors in an interval will mean the polynomial is negative on
 - that interval
- Copyright If the value satisfies the inequality then that interval is part of the solution

© 2024 Exam Papers Practice

💽 Exam Tip

- In exams most solutions will be intervals but some could be a single point
 - For example: Solution to $(x-3)^2 \le 0$ is x=3

Worked example

Solve the inequality $x^3 + 2x^2 > x + 2$ using an algebraic method.

