

2.7 Polynomial Functions

Contents

- ✤ 2.7.1 Factor & Remainder Theorem
- ✤ 2.7.2 Polynomial Division
- ★ 2.7.3 Polynomial Functions
- ✤ 2.7.4 Roots of Polynomials

TRUEILIS Reserved

2.7.1 Factor & Remainder Theorem

Factor Theorem

What is the factor theorem?

- The factor theorem is used to find the linear factors of polynomial equations
- This topic is closely tied to finding the zeros and roots of a polynomial function/equation
 - As a rule of thumb a zero refers to the polynomial function and a root refers to a polynomial equation
- For any **polynomial** function P(x)
 - (x k) is a factor of P(x) if P(k) = 0
 - P(k) = 0 if (x k) is a factor of P(x)

How do I use the factor theorem?

- Consider the polynomial function $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and (x k) is a **factor**
 - Then, due to the factor theorem $P(k) = a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0 = 0$
 - $P(x) = (x k) \times Q(x)$, where Q(x) is a **polynomial** that is a factor of P(x)
 - Hence, $\frac{P(x)}{x-k} = Q(x)$, where Q(x) is another factor of P(x)
- If the linear factor has a coefficient of x then you must first factorise out the coefficient

• If the linear factor is
$$(ax - b) = a\left(x - \frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right) = 0$$

Worked example

Determine whether (x-2) is a factor of the following polynomials:

a)
$$f(x) = x^3 - 2x^2 - x + 2$$
.

Step 1: Determine k
Our linear function is
$$x - 2$$

 $\rightarrow so k = 2$
Step 2: Apply factor theorem
For $x - 2$ to be a factor of $f(x)$,
 $f(2)$ has to equal zero
 $f(2) = (2)^3 - 2(2)^2 - (2) + 2$
 $= 8 - 8 - 2 + 2$
 $= 0$

f(2) = 0, so x - 2 is a factor of f(x)

b)
$$g(x) = 2x^3 + 3x^2 - x + 5$$

Step 1: Determine k
Our linear function is
$$x - 2$$

 $\rightarrow so k = 2$
Step 2: Apply factor theorem
For $x - 2$ to be a factor of $g(x)$,
 $g(2)$ has to equal zero
 $g(2) = 2(2)^3 + 3(2)^2 - (2) + 5$
 $= 16 - 12 - 2 + 5$
 $= 7$
 $g(2) = 7$,

so x-2 is not a factor of g(x)

It is given that (2x-3) is a factor of $h(x) = 2x^3 - bx^2 + 7x - 6$. ACY CU

c) Find the value of b.

Remainder Theorem

What is the remainder theorem?

- The **remainder theorem** is used to find the remainder when we divide a **polynomial** function by a linear function
- When any polynomial P(x) is divided by any linear function (x k) the value of the remainder R is given by P(k) = R
 - Note, when P(k) = 0 then (x k) is a factor of P(x)

How do I use the remainder theorem?

- Consider the polynomial function $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and the linear function (x k)
 - Then, due to the remainder theorem $P(k) = a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0 = R$
 - $P(x) = (x k) \times Q(x) + R$, where Q(x) is a polynomial

• Hence,
$$\frac{P(x)}{x-k} = Q(x) + \frac{R}{x-k}$$
, where R is the remainder

• If the linear function has a **coefficient of x** then you must first factorise out the coefficient

• If the linear function is
$$(ax - b) = a\left(x - \frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right) = R$$

Riellis Reserved

Stepl: Determine k Our linear function is x+2 \rightarrow so k = -2Step 2: Apply remainder theorem f(-2) = R $f(-2) = 2(-2)^4 - 2(-2)^3 - (-2)^2 - 3(-2) + 1$ f(-2) = 32 + 16 - 4 + 6 + 1f(-2) = 5lR = 51The remainder when f(x) is divided by (2x+k) is $\frac{893}{8}$. Given that k > 0, find the value of k. C) Step 1: Apply remainder theorem $2x + k = 2(x + \frac{k}{2})$ $f(-\frac{k}{2}) = \frac{893}{2}$ $\frac{893}{2} = 2(-\frac{k}{2})^4 - 2(-\frac{k}{2})^3 - (-\frac{k}{2})^2 - 3(-\frac{k}{2}) + 1$ Step 2: Solve for k using your GDC k = 5

2.7.2 Polynomial Division

Polynomial Division

What is polynomial division?

- Polynomial division is the process of **dividing two polynomials**
 - This is usually only useful when the degree of the denominator is less than or equal to the degree of the numerator
- To do this we use an algorithm similar to that used for **division of integers**
- To divide the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ by the polynomial

$$D(x) = b_k x^k + b_{k-1} x^{k-1} + \dots + b_1 x + b_0 \text{ where } k \le n$$

STEP1

Divide the leading term of the polynomial P(x) by the leading term of the divisor D(x):

$$\frac{a_n x^n}{b_h x^k} = q_m x^m$$

STEP 2

Multiply the divisor by this term: $D(x) \times q_m x^m$

STEP 3

Subtract this from the original polynomial P(x) to cancel out the leading term: $R(x) = P(x) - D(x) \times q_m x^m$

- Repeat steps 1 3 using the new polynomial R(x) in place of P(x) until the subtraction results in an expression for R(x) with degree less than the divisor
 - The quotient Q(x) is the **sum of the terms** you multiplied the divisor by:

$$Q(x) = q_m x^m + q_{m-1} x^{m-1} + \dots + q_1 x + q_0$$

• The remainder *R*(*x*) is the polynomial after the final subtraction

Division by linear functions

• If P(x) has degree n and is divided by a linear function (ax + b) then

$$\frac{P(x)}{ax+b} = Q(x) + \frac{R}{ax+b}$$
 where

- *ax* + *b* is the **divisor** (degree 1)
- Q(x) is the **quotient** (degree *n* 1)
- *R* is the **remainder** (degree 0)
- Note that $P(x) = Q(x) \times (ax + b) + R$

·) ~

Division by quadratic functions

• If P(x) has degree n and is divided by a quadratic function $(ax^2 + bx + c)$ then

$$P(x) = Q(x) + \frac{ex+f}{ax^2+bx+c} = Q(x) + \frac{ex+f}{ax^2+bx+c}$$
 where

- $ax^2 + bx + c$ is the **divisor** (degree 2)
- Q(x) is the **quotient** (degree *n* 2)
- ex + f is the **remainder** (degree less than 2)
- The remainder will be **linear** (degree 1) if $e \neq 0$, and **constant** (degree 0) if e = 0
- Note that $P(x) = Q(x) \times (ax^2 + bx + c) + ex + f$

Division by polynomials of degree $k \le n$

• If P(x) has degree n and is divided by a polynomial D(x) with degree $k \le n$

$$\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$
 where

- D(x) is the **divisor** (degree k)
- Q(x) is the **quotient** (degree n k)
- *R*(*x*) is the **remainder** (degree less than *k*)
- Note that $P(x) = Q(x) \times D(x) + R(x)$

Are there other methods for dividing polynomials?

- Synthetic division is a faster and shorter way of setting out a division when dividing by a linear term of the form
 - To divide $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \operatorname{by} (x c)$:

• Set
$$b_n = a_n$$

- Calculate $b_{n-1} = a_{n-1} + c \times b_n$
- Continue this iterative process $b_{i-1} = a_{i-1} + c \times a_i$
- The quotient is $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$ and the remainder is $r = b_0$
- You can also find quotients and remainders by **comparing coefficients**
 - Given a polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$
 - And a divisor $D(x) = d_k x^k + d_{k-1} x^{k-1} + \dots + d_1 x + d_0$

• Write
$$Q(x) = q_{n-k}x^{n-k} + \dots + q_1x + q_0$$
 and $R(x) = r_{k-1}x^{k-1} + \dots + r_1x + r_0$
• Write $P(x) = Q(x)D(x) + R(x)$

- Write P(X) = Q(X)D(X) + K(X)• Expand the right-hand side
 - Equate the coefficients
 - Solve to find the unknowns q's & r's

For more help, please visit www.exampaperspractice.co.uk

2.7.3 Polynomial Functions

Sketching Polynomial Graphs

In exams you'll commonly be asked to sketch the graphs of different polynomial functions with and without the use of your GDC.

What's the relationship between a polynomial's degree and its zeros?

- If a **real polynomial** P(x) has **degree** n, it will have n zeros which can be written in the form a + bi, where a, $b \in \mathbb{R}$
 - For example:
 - A quadratic will have 2 zeros
 - A cubic function will have 3 zeros
 - A quartic will have 4 zeros
 - Some of the zeros may be **repeated**
- Every real polynomial of odd degree has at least one real zero

How do I sketch the graph of a polynomial function without a GDC?

- Suppose $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a real polynomial with degree n
- To sketch the graph of a polynomial you need to know three things:
 - The y-intercept
 - Find this by substituting x = 0 to get $y = a_0$
 - The roots
 - You can find these by **factorising** or solving **y** = **0**
 - The shape
 - This is determined by the **degree** (*n*) and the sign of the **leading coefficient** (*a_n*)

How does the multiplicity of a real root affect the graph of the polynomial?

- The multiplicity of a root is the number of times it is repeated when the polynomial is factorised
 - If x = k is a root with **multiplicity** *m* then $(x k)^m$ is a **factor** of the polynomial
- The graph either **crosses** the x-axis or **touches** the x-axis at a **root x = k** where k is a real number
 - If x = k has multiplicity 1 then the graph crosses the x-axis at (k, 0)
 - If x = k has multiplicity 2 then the graph has a turning point at (k, 0) so touches the x-axis
 - If x = k has odd multiplicity m ≥ 3 then the graph has a stationary point of inflection at (k, 0) so crosses the x-axis
 - If x = k has even multiplicity $m \ge 4$ then the graph has a turning point at (k, 0) so touches the x-axis

How do I determine the shape of the graph of the polynomial?

- Consider what happens as **x tends to ± ∞**
 - If a_n is positive and n is even then the graph approaches from the top left and tends to the top right
 - $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$
 - If a_n is negative and n is even then the graph approaches from the bottom left and tends to the bottom right
 - $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$
 - If a_n is positive and n is odd then the graph approaches from the bottom left and tends to the top right

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to +\infty} f(x) = +\infty$$

- If a_n is negative and n is odd then the graph approaches from the top left and tends to the bottom right
 - $\lim_{x \to -\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} f(x) = -\infty$
- Once you know the shape, the real roots and the y-intercept then you simply connect the points using a smooth curve
- There will be at least one turning point in-between each pair of roots
 - If the degree is *n* then there is **at most** *n* **1 stationary points (**some will be **turning points**)
 - Every real polynomial of even degree has at least one turning point
 - Every real polynomial of odd degree bigger than 1 has at least one point of inflection
 - If it is a calculator paper then you can use your GDC to find the coordinates of the turning points
 - You won't need to find their location without a GDC unless the question asks you to

a) The function f is defined by $f(x) = (x+1)(2x-1)(x-2)^2$. Sketch the graph of y = f(x).

```
Find the y-intercept

x = 0: y = (1)(-1)(-2)^{x} = -4

Find the roots and determine if graphs crosses or touches the x-axis

(x + 1)(2x - 1)(x - 2)^{x}

(-1, 0) (\frac{1}{2}, 0) (2, 0)

cross cross touch

Determine the shape by looking at the leading term

Leading term is (x)(2x)(x)^{x} = 2x^{4}

As x \to -\infty y \to +\infty

As x \to +\infty y \to +\infty

As x \to +\infty y \to +\infty

As x \to +\infty y \to +\infty
```

b) The graph below shows a polynomial function. Find a possible equation of the polynomial.

Solving Polynomial Equations

What is "The Fundamental Theorem of Algebra"?

- Every real polynomial with degree n can be factorised into n complex linear factors
 - Some of which may be repeated
 - This means the polynomial will have *n* zeros (some may be repeats)
- Every real polynomial can be expressed as a product of real linear factors and real irreducible quadratic factors
 - An irreducible quadratic is where it does not have real roots
 - The discriminant will be negative: b² 4ac < 0</p>
- If a + bi ($b \neq 0$) is a zero of a real polynomial then its complex conjugate a bi is also a zero
- Every real polynomial of odd degree will have at least one real zero

How do I solve polynomial equations?

Suppose you have an equation P(x) = 0 where P(x) is a real polynomial of degree n

•
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- You may be given one zero or you might have to find a zero x = k by substituting values into P(x) until it equals 0
- If you know a root then you know a factor
 - If you know x = k is a root then (x k) is a factor
 - If you know x = a + bi is a root then you know a quadratic factor (x (a + bi))(x (a bi))
 - Which can be written as ((x a) bi)((x a) + bi) and expanded quickly using difference of two squares
- You can then **divide** P(x) by this factor to get **another factor**
- For example: dividing a cubic by a linear factor will give you a quadratic factor Jà Reserved
- You then may be able to factorise this new factor

Worked example Given that $x = \frac{1}{2}$ is a zero of the polynomial defined by $f(x) = 2x^3 - 3x^2 + 5x - 2$, find all three zeros of f. $x = \frac{1}{2}$ is a root \therefore (2x-1) is a factor Find the quadratic factor $(2x^3 - 3x^2 + 5x - 2) = (2x - 1)(ax^2 + bx + c)$ Compare coefficients $2x^3 = 2ax^3$ $\therefore a = 1$ -2 =- c .: c=2 5x = 2cx - bx => 5= 4 - b ... b= -1 Solve the quadratic : $x^2 - x + 2 = 0$ Formula booklet Solutions of a quadratic $ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(2)}}{2(1)}$ $x = \frac{1 \pm \sqrt{-7}}{2} = \frac{1}{2} \pm \frac{\sqrt{7}}{2}i$ Roots : $\frac{1}{2}$, $\frac{1}{2}$ + $\frac{\sqrt{7}}{2}$ i, $\frac{1}{2}$ - $\frac{\sqrt{7}}{2}$ i

2.7.4 Roots of Polynomials

Sum & Product of Roots

How do I find the sum & product of roots of polynomials?

• Suppose $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a **polynomia**l of **degree** *n* with *n* roots

$$\alpha_1, \alpha_2, ..., \alpha_n$$

- The polynomial is written as $\sum_{r=0}^{n} a_r x^r = 0$, $a_n \neq 0$ in the formula booklet
- *a_n* is the coefficient of the **leading term**
- a_{n-1} is the coefficient of the x^{n-1} term
 - Be careful: this could be equal to zero
- a₀ is the constant term
 Be careful: this could be equal to zero
- In factorised form: $P(x) = a_n(x \alpha_1)(x \alpha_2)...(x \alpha_n)$
 - Comparing coefficients of the xⁿ⁻¹ term and the constant term gives

$$a_{n-1} = a_n(-\alpha_1 - \alpha_2 - \dots - \alpha_n)$$
$$a_0 = a_n(-\alpha_1) \times (-\alpha_2) \times \dots \times (-\alpha_n)$$

• The **sum** of the roots is given by:

•
$$\alpha_1 + \alpha_2 + \dots + \alpha_n = -\frac{\alpha_{n-1}}{\alpha_n}$$

• The **product** of the roots is given by:

•
$$\alpha_1 \times \alpha_2 \times \dots \times \alpha_n = \frac{(-1)^n a_0}{a_n}$$

• both of these formulae are in your formula booklet

How can I find unknowns if I am given the sum and/or product of the roots of a polynomial?

- If you know a complex root of a real polynomial then its **complex conjugate** is **another root**
- Form two equations using the roots
 - One using the **sum of the roots formula**
 - One using the product of the roots formula
- Solve for any unknowns

