

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2.7 Polynomial Functions

IB Maths - Revision Notes

AA HL

2.7.1 Factor & Remainder Theorem

Factor Theorem

What is the factor theorem?

- The factor theorem is used to find the linear factors of polynomial equations
- This topic is closely tied to finding the zeros and roots of a polynomial function/equation
 - As a rule of thumb a **zero** refers to the polynomial function and a **root** refers to a polynomial equation
- For any **polynomial** function P(x)
 - (x k) is a factor of P(x) if P(k) = 0
 - *P(k)* = 0 if (x k) is a factor of *P(x)*

How do luse the factor the orem?

- Consider the polynomial function $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and (x k) is a **factor**
 - Then, due to the factor theorem $P(k) = a_n k^n + a_{n-1} k^{n-1} + ... + a_1 k + a_0 = 0$
 - $P(x) = (x k) \times Q(x)$, where Q(x) is a **polynomial** that is a factor of P(x)

• Hence,
$$\frac{P(x)}{x-k} = Q(x)$$
, where $Q(x)$ is another factor of $P(x)$

• If the linear factor has a **coefficient of** *x* then you must first factorise out the coefficient 💿

• If the linear factor is $(ax - b) = a\left(x - \frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right) = 0$

© 2024 Exam Papers Practice

💽 Exam Tip

- A common mistake in exams is using the incorrect sign for either the root or the factor
- If you are asked to find integer solutions to a polynomial then you only need to consider factors of the constant term

Worked example

Determine whether (x-2) is a factor of the following polynomials:

a)
$$f(x) = x^3 - 2x^2 - x + 2$$
.
Step 1: Determine k
Our linear function is $x - 2$
 $\rightarrow s_0 = 2$
Step 2: Apply factor theorem
For $x - 2$ to be a factor of $f(x)$,
 $f(x)$ has to equal zero
 $f(2) = (2)^3 - 2(2)^2 - (2) + 2$
 $= 8 - 8 - 2 + 2$
 $= 0$
Dependence Dependence Dependence
 $f(2) = 0$,
so $x - 2$ is a factor of $f(x)$

b) $g(x) = 2x^3 + 3x^2 - x + 5$.

Step 1: Determine k
Our linear function is
$$x - 2$$

 $\rightarrow so k = 2$
Step 2: Apply factor theorem
For $x - 2$ to be a factor of $g(x)$,
 $g(2)$ has to equal zero
 $g(2) = 2(2)^3 + 3(2)^2 - (2) + 5$
 $= 16 - 12 - 2 + 5$
 $= 7$
 $g(2) = 7$,
so $x - 2$ is not a factor of $g(x)$

© 2024 Exam Papers Practice

It is given that (2x - 3) is a factor of $h(x) = 2x^3 - bx^2 + 7x - 6$.

c) Find the value of b.

Step 1: Determine k
Our linear function is
$$2x-3$$

 $\rightarrow so k = \frac{3}{2}$
Step 2: Apply factor theorem to find b
Since $2x-3$ is a factor of $h(x)$,
 $h\left(\frac{3}{2}\right) = 0$
 $0 = 2\left(\frac{3}{2}\right)^3 - b\left(\frac{3}{2}\right)^2 + 7\left(\frac{3}{2}\right) - 6$
 $= \frac{54}{8} - \frac{9}{4}b + \frac{21}{2} - 6$
 $b = 5$

Remainder Theorem

What is the remainder theorem?

The remainder theorem is used to find the remainder when we divide a polynomial function by a linear function

Copyright When any polynomial P(x) is divided by any linear function (x - k) the value of the remainder R is © 2024 Explored by P(k) = R

• Note, when P(k) = 0 then (x - k) is a factor of P(x)

How do luse the remainder theorem?

- Consider the polynomial function $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x + a_0$ and the linear function (x k)
 - Then, due to the remainder theorem $P(k) = a_n k^n + a_{n-1} k^{n-1} + ... + a_1 k + a_0 = R$

•
$$P(x) = (x - k) \times Q(x) + R$$
, where $Q(x)$ is a **polynomial**

• Hence,
$$\frac{P(x)}{x-k} = Q(x) + \frac{R}{x-k}$$
, where R is the remainder

• If the linear factor has a **coefficient of** *x* then you must first factorise out the coefficient

• If the linear factor is
$$(ax - b) = a\left(x - \frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right) = R$$

k = 5

2.7.2 Polynomial Division

Polynomial Division

What is polynomial division?

- Polynomial division is the process of dividing two polynomials
 - This is usually only useful when the degree of the denominator is less than or equal to the degree of the numerator
- To do this we use an algorithm similar to that used for division of integers
- To divide the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ by the polynomial

$$D(x) = b_k x^k + b_{k-1} x^{k-1} + \dots + b_1 x + b_0 \text{ where } k \le n$$

STEP 1

Divide the **leading term of the polynomial** P(x) by the **leading term of the divisor** D(x):

$$\frac{a_n x^n}{b_b x^k} = q_m x^m$$

STEP 2

Multiply the divisor by this term: $D(x) imes q_m x^m$

STEP 3

Subtract this from the original polynomial P(x) to cancel out the leading term:

Repeat steps 1 – 3 using the new polynomial R(x) in place of P(x) until the subtraction results in © 2024 Exa an expression for R(x) with degree less than the divisor

• The quotient Q(x) is the **sum of the terms** you multiplied the divisor by:

$$Q(x) = q_m x^m + q_{m-1} x^{m-1} + \dots + q_1 x + q_0$$

• The remainder R(x) is the polynomial after the final subtraction

Division by linear functions

• If P(x) has degree n and is divided by a linear function (ax + b) then

•
$$\frac{P(x)}{ax+b} = Q(x) + \frac{R}{ax+b}$$
 where

 $R(x) = P(x) - D(x) \times q_m x^m$

- ax+bis the divisor (degree l)
- Q(x) is the **quotient** (degree n-1)

- R is the remainder (degree 0)
- Note that $P(x) = O(x) \times (ax + b) + R$

Division by quadratic functions

• If P(x) has degree n and is divided by a quadratic function $(ax^2 + bx + c)$ then

$$\frac{P(x)}{ax^2 + bx + c} = Q(x) + \frac{ex + f}{ax^2 + bx + c}$$
 where

- $ax^2 + bx + c$ is the **divisor** (degree 2)
- Q(x) is the **quotient** (degree n-2)
- ex+ f is the remainder (degree less than 2)
- The remainder will be linear (degree]) if $e \neq 0$, and constant (degree 0) if e = 0
- Note that $P(x) = O(x) \times (ax^2 + bx + c) + ex + f$

Division by polynomials of degree $k \le n$

• If P(x) has degree n and is divided by a polynomial D(x) with degree $k \le n$

$$P(x) = Q(x) + \frac{R(x)}{D(x)}$$
 where

- D(x) is the divisor (degree k)
- Q(x) is the **quotient** (degree n k)
- R(x) is the remainder (degree less than k)
- Note that $P(x) = O(x) \times D(x) + R(x)$

Are there other methods for dividing polynomials?

• Synthetic division is a faster and shorter way of setting out a division when dividing by a linear term of the form

Copyright To divide $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ by (x - c): © 2024 Exam Papers Practice • Set $b_n = a_n$

- Calculate $b_{n-1} = a_{n-1} + c \times b_n$
- Continue this iterative process $b_{i-1} = a_{i-1} + c \times a_i$
- The quotient is $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$ and the remainder is

$$r = b_0$$

- You can also find quotients and remainders by comparing coefficients
 - Given a polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$
 - And a divisor $D(x) = d_k x^k + d_{k-1} x^{k-1} + \dots + d_1 x + d_0$

• Write
$$Q(x) = q_{n-k}x^{n-k} + \dots + q_1x + q_0$$
 and $R(x) = r_{k-1}x^{k-1} + \dots + r_1x + r_0$

- Write P(x) = Q(x)D(x) + R(x)
 - Expand the right-hand side
 - Equate the coefficients
 - Solve to find the unknowns *q*'s & *r's*

💽 Exam Tip

In an exam you can use whichever method to divide polynomials - just make sure your method is written clearly so that if you make a mistake you can still get a mark for your method!

🖉 Worked example

Find the quotient and remainder for
$$\frac{x^4 + 4x^3 - x + 1}{x^2 - 2x}$$
. Hence write $x^4 + 4x^3 - x + 1$
in the form $Q(x) \times (x^2 - 2x) + R(x)$.

b)

2.7.3 Polynomial Functions

Sketching Polynomial Graphs

In exams you'll commonly be asked to sketch the graphs of different polynomial functions with and without the use of your GDC.

What's the relationship between a polynomial's degree and its zeros?

- If a **real polynomial** P(x) has **degree** n, it will have nzeros which can be written in the form a + bi, where $a, b \in \mathbb{R}$
 - Forexample:
 - A quadratic will have 2 zeros
 - A cubic function will have 3 zeros
 - A quartic will have 4 zeros
 - Some of the zeros may be repeated
- Every real polynomial of odd degree has at least one real zero

How do I sketch the graph of a polynomial function without a GDC?

- Suppose $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a real polynomial with degree n
- To sketch the graph of a polynomial you need to know three things:
 - The y-intercept
 - Find this by **substituting x** = **0** to get **y** = **a**₀
 - The roots
 - You can find these by **factorising** or solving **y**=0
 - The shape
 - This is determined by the **degree** (*n*) and the sign of the **leading coefficient** (a_n)

Copyrigh

\odot 2 How does the multiplicity of a real root affect the graph of the polynomial?

- The multiplicity of a root is the number of times it is repeated when the polynomial is factorised
 - If x = k is a root with **multiplicity** *m* then $(x k)^m$ is a **factor** of the polynomial
- The graph either **crosses** the *x*-axis or **touches** the *x*-axis at a **root** *x* = *k* where *k* is a real number
 - If x = k has multiplicity 1 then the graph crosses the x-axis at (k, 0)
 - If x = k has multiplicity 2 then the graph has a turning point at (k, 0) so touches the x-axis
 - If x = k has odd multiplicity m≥3 then the graph has a stationary point of inflection at (k, 0) so crosses the x-axis
 - If x = k has even multiplicity m≥ 4 then the graph has a turning point at (k, 0) so touches the x-axis

How do I determine the shape of the graph of the polynomial?

- Consider what happens as *xtends to ±* ∞
 - If a_n is positive and n is even then the graph approaches from the top left and tends to the top right ∞ is [

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$$

Copyright If a_n is negative and n is even then the graph approaches from the bottom left and tends to © 2024 Exarthe bott om right

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$$

- If a_n is positive and n is odd then the graph approaches from the bottom left and tends to the top right
 - $\lim f(x) = -\infty$ and $\lim f(x) = +\infty$ $x \rightarrow +\infty$ $x \rightarrow -\infty$
- If *a_n* is **negative** and *n* is **odd** then the graph **approaches from the top left** and **tends to the** bottomright
 - $\lim f(x) = +\infty$ and $\lim f(x) = -\infty$ $x \rightarrow -\infty$ $x \rightarrow +\infty$

- Once you know the **shape**, the **real roots** and the **y-intercept** then you simply connect the points using a **smooth curve**
- There will be at least one turning point in-between each pair of roots
 - If the degree is *n* then there is **at most** *n* **1 stationary points (**some will be **turning points**)
 - Every real polynomial of even degree has at least one turning point
 - Every real polynomial of odd degree bigger than 1 has at least one point of inflection
 - If it is a calculator paper then you can use your GDC to find the coordinates of the turning points
 - You won't need to find their location without a GDC unless the question asks you to

- © 202 **Q**x**Exam Tip**Practice
 - If it is a calculator paper then you can use your GDC to find the coordinates of any turning points
 - If it is the non-calculator paper then you will not be required to find the turning points when sketching unless specifically asked to

Worked example

a) The function f is defined by $f(x) = (x+1)(2x-1)(x-2)^2$. Sketch the graph of y = f(x).

Find the y-intercept $x = 0 = y = (1)(-1)(-2)^2 = -4$ Find the roots and determine if graphs crosses or touches the x-axis $(x + 1)(2x - 1)(x - 2)^{2}$ (-1,0) $(\frac{1}{2},0)$ (2,0)cross cross touch Determine the shape by looking at the leading term Leading term is $(x)(2x)(x)^2 = 2x^4$ As x→-∞ y→+∞ As $x \to +\infty$ y →+∞ 3 Practice © 2024 Exam Papers Practige,0) $(\frac{1}{2}, 0)$ (2,0) (0,-4)

b) The graph below shows a polynomial function. Find a possible equation of the polynomial.

Solving Polynomial Equations

What is "The Fundamental Theorem of Algebra"?

- Every **real polynomial** with degree *n* can be factorised into *n* complex linear factors
 - Some of which may be repeated
 - This means the polynomial will have *n*zeros (some may be repeats)
- Every real polynomial can be expressed as a product of real linear factors and real irreducible quadratic factors
 - An irreducible quadratic is where it does not have real roots
 The discriminant will be negative: b²-4ac<0
- If $a + bi(b \neq 0)$ is a zero of a real polynomial then its complex conjugate a bi is also a zero
- Every real polynomial of odd degree will have at least one real zero

How do Isolve polynomial equations?

- Suppose you have an equation P(x) = 0 where P(x) is a real polynomial of degree n
 - $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$
- You may be given one zero or you might have to find a zero x = k by substituting values into P(x) until it equals 0
- If you know a root then you know a factor
 - If you know x = k is a root then (x k) is a factor
 - If you know x = a + bi is a root then you know a quadratic factor (x (a + bi))(x (a bi))
 - Which can be written as ((x a) bi)((x a) + bi) and expanded quickly using difference of two squares
- You can then **divide** *P*(x) by this factor to get **another factor**
- For example: dividing a cubic by a linear factor will give you a quadratic factor
- You then may be able to factorise this new factor

Copyrig

© 202 (2) x Exam Tip Practice

- If a polynomial has three or less terms check whether a substitution can turn it into a quadratic
 - For example: $x^6 + 3x^3 + 2$ can be written as $(x^3)^2 + 3(x^3) + 2$

Worked example

Given that $x = \frac{1}{2}$ is a zero of the polynomial defined by $f(x) = 2x^3 - 3x^2 + 5x - 2$, find all three zeros of f.

2.7.4 Roots of Polynomials

Sum & Product of Roots

How do I find the sum & product of roots of polynomials?

- Suppose $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a **polynomial** of **degree** *n* with *n* roots $\alpha_1, \alpha_2, ..., \alpha_n$
 - The polynomial is written as $\sum_{r=0}^{\infty} a_r x^r = 0$, $a_n \neq 0$ in the **formula booklet**
 - *a_n* is the coefficient of the **leading term**
 - *a_{n-1}* is the coefficient of the *xⁿ⁻¹* term
 - Be careful: this could be equal to zero
 - *a*₀ is the **constant term**
 - Be careful: this could be equal to zero
- Infactorised form: $P(x) = a_n(x \alpha_1)(x \alpha_2)...(x \alpha_n)$
 - Comparing coefficients of the xⁿ⁻¹ term and the constant term gives

•
$$a_{n-1} = a_n(-\alpha_1 - \alpha_2 - \dots - \alpha_n)$$

- $a_0 = a_n(-\alpha_1) \times (-\alpha_2) \times \dots \times (-\alpha_n)$
- The **sum** of the roots is given by:

•
$$\alpha_1 + \alpha_2 + \dots + \alpha_n = -\frac{a_{n-1}}{a_n}$$

 $\alpha_1 \times \alpha_2 \times \dots \times \alpha_n = \frac{(-1)^n a_0}{a_n}$ ers Practice The product of the roots is given by:

© 2024 Exam Papers Portiese formulae are in your formula booklet

How can I find unknowns if I am given the sum and/or product of the roots of a polynomial?

- If you know a complex root of a real polynomial then its complex conjugate is another root
- Form two equations using the roots
 - One using the sum of the roots formula
 - One using the product of the roots formula
- Solve for any unknowns

🖸 Exam Tip

- Examiners might trick you by not having an x^{n-1} term or a constant term
- To make sure you do not get tricked you can write out the full polynomial using 0 as a coefficient where needed
 - For example: Write $x^4 + 2x^2 5x$ as $x^4 + 0x^3 + 2x^2 5x + 0$

🖉 Worked example

2-3i, $\frac{5}{3}i$ and α are three roots of the equation $18x^5 - 9x^4 + 32x^3 + 794x^2 - 50x + k = 0.$

a) Use the sum of all the roots to find the value of α .

It is a real polynomial so if a+bi is a root then a-bi is also a root Roots: 2-3i, 2+3i, $\frac{5}{3}i$, $-\frac{5}{3}i$, ∞ Formula booklet $\begin{bmatrix} sum & s & product of the \\ sum & s & max \\ \frac{5}{2a}a,x'=0 \end{bmatrix} \begin{bmatrix} 18x^5 - 9x^4 + 32x^3 + 794x^2 - 50x + k \\ \frac{5}{2a}a,x'=0 \end{bmatrix} \begin{bmatrix} 2-3i \\ 18x^5 - 9x^4 + 32x^3 + 794x^2 - 50x + k \\ \frac{3}{2a}a = 18a_{n-1} = -9 \\ \frac{3}{2a}a = 18a_{n-1} = -9 \\ \frac{4}{2}a = \frac{1}{2}a \end{bmatrix}$

b) Use the product of all the roots to find the value of k.

