铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.7 Polynomial Functions

AA HL

2.7.1 Factor \& Remainder Theorem

Factor Theorem

What is the factor theorem?

- The factor theorem is used to find the linear factors of polynomial equations
- This topic is closelytied to finding the zeros and roots of a polynomial function/equation
- As a rule of thumb a zero refers to the polynomial function and a root refers to a polynomial equation
- For anypolynomial function $P(x)$
- $(x-k)$ is a factor of $P(x)$ if $P(\boldsymbol{k})=\mathbf{0}$
- $P(k)=0$ if $(x-k)$ is a factor of $P(x)$

How do luse the factor theorem?

- Considerthe polynomial function $P(x)=a_{n} x^{n}+a_{n-} x^{n-1}+\ldots+a_{1} x+a_{0}$ and $(x-k)$ is a factor
- Then, due to the factor theorem $P(k)=a_{n} k^{n}+a_{n-} k^{n-1}+\ldots+a_{l} k+a_{0}=0$
- $P(x)=(x-k) \times Q(x)$, where $Q(x)$ is a poly no mial that is a factor of $P(x)$
- Hence, $\frac{P(x)}{x-k}=Q(x)$, where $Q(x)$ is anotherfactorof $P(x)$
- If the linear factor has a coefficient of \boldsymbol{x} then you must first factorise out the coefficient
- If the linearfactoris $(a x-b)=a\left(x-\frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right)=0$

(9) Exam Tip

- A common mistake in exams is using the incorrect sign for eitherthe root orthe factor
- If you are asked to find integer solutions to a polynomial then you only need to consider factors of the constant term

Exam Papers Practice

Worked example

Determine whether $(x-2)$ is a factor of the following polynomials:
a) $\quad f(x)=x^{3}-2 x^{2}-x+2$.

Step 1: Determine k

Our linear function is $x-2$
\rightarrow so $k=2$
Step 2: Apply factor theorem
For $x-2$ to be a factor of $f(x)$,
$f(2)$ has to equal zero
$f(2)=(2)^{3}-2(2)^{2}-(2)+2$
$=8-8-2+2$ $=0$
$f(2)=0$,
so $x-2$ is a factor of $f(x)$
b) $\quad g(x)=2 x^{3}+3 x^{2}-x+5$.

Exam Papers Practice

Step 1: Determine k
Our linear function is $x-2$
\rightarrow so $k=2$
Step 2: Apply factor theorem
For $x-2$ to be a factor of $g(x)$,
$g(2)$ has to equal zero
$g(2)=2(2)^{3}+3(2)^{2}-(2)+5$
$=16-12-2+5$
$=7$
$g(2)=7$,
so $x-2$ is not a factor of $g(x)$
Copyright
© 2024 Exam Papers Practice
It is given that $(2 x-3)$ is a factor of $h(x)=2 x^{3}-b x^{2}+7 x-6$.
c) Find the value of b.

Step 1: Determine k

Our linear function is $2 x-3$
\rightarrow so $k=\frac{3}{2}$
Step 2: Apply factor theorem to find b
Since $2 x-3$ is a factor of $h(x)$,
$h\left(\frac{3}{2}\right)=0$
$0=2\left(\frac{3}{2}\right)^{3}-b\left(\frac{3}{2}\right)^{2}+7\left(\frac{3}{2}\right)-6$
$=\frac{54}{8}-\frac{9}{4} b+\frac{21}{2}-6$
$b=5$

Remainder Theorem

What is the remainder theorem?

- The remainder theorem is used to find the remaind er when we divide a polynomial functionbya linearfunction
- When any polynomial $P(x)$ is divided by any line ar function $(x-k)$ the value of the remainder R is given by $P(k)=R$
- Note, when $P(k)=0$ then $(x-k)$ is a factor of $P(x)$

How doluse the remainder theorem?

- Consider the polynomial function $P(x)=a_{n} x^{n}+a_{n-} x^{n-1}+\ldots+a_{1} x+a_{0}$ and the linear function $(x-k)$
- Then, due to the remainder theorem $P(k)=a_{n} k^{n}+a_{n-1} k^{n-1}+\ldots+a_{1} k+a_{0}=R$
- $P(x)=(x-k) \times Q(x)+R$, where $Q(x)$ is a polynomial
- Hence, $\frac{P(x)}{x-k}=Q(x)+\frac{R}{x-k}$, where R is the remaind er
- If the linearfactor has a coefficient of \boldsymbol{x} then you must first factorise out the coefficient
- If the linearfactoris $(a x-b)=a\left(x-\frac{b}{a}\right) \rightarrow P\left(\frac{b}{a}\right)=R$

Exam Papers Practice

Worked example

Let $f(x)=2 x^{4}-2 x^{3}-x^{2}-3 x+1$, find the remainder R when $f(x)$ is divided by:
a) $\quad x-3$.

$$
\text { Step 1: Determine } k
$$

Our linear function is $x-3$
\rightarrow so $k=3$
Step 2: Apply remainder theorem

$$
f(3)=R
$$

$$
f(3)=2(3)^{4}-2(3)^{3}-(3)^{2}-3(3)+1
$$

$$
f(3)=162-54-9-9+1
$$

$$
f(3)=91
$$

$$
R=91
$$

Ex $R=91$
Pa
Copyright
© 2024 b) $\mathrm{am} \mathrm{P} \boldsymbol{X}+2$

Step 1: Determine k
Our linear function is $x+2$

$$
\rightarrow \text { so } \quad k=-2
$$

Step 2: Apply remainder theorem

$$
\begin{aligned}
& f(-2)=R \\
& f(-2)=2(-2)^{4}-2(-2)^{3}-(-2)^{2}-3(-2)+1 \\
& f(-2)=32+16-4+6+1 \\
& f(-2)=51 \\
& R=51
\end{aligned}
$$

The remainderwhen $f(x)$ is divided by $(2 x+k)$ is $\frac{893}{8}$.
c) Given that $k>0$, find the value of k.

Papers Practice
Step: Apply remainder theorem

$$
\begin{aligned}
& 2 x+k=2\left(x+\frac{k}{2}\right) \quad f\left(-\frac{k}{2}\right)=\frac{893}{8} \\
& \frac{893}{8}=2\left(-\frac{k}{2}\right)^{4}-2\left(-\frac{k}{2}\right)^{3}-\left(-\frac{k}{2}\right)^{2}-3\left(-\frac{k}{2}\right)+1
\end{aligned}
$$

Step 2: Solve for k using your $G D C$

$$
k=5
$$

2.7.2 Polynomial Division

Polynomial Division

What is polynomial division?

- Polynomial division is the process of dividing two polynomials
- This is usually only useful when the degree of the denominat or is less than or equal to the degree of the numerator
- To do this we use an algorithm similar to that used fordivision of integers
- To divide the polynomial $P(x)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{1} X+a_{0}$ bythe polynomial
$D(x)=b_{k} x^{k}+b_{k-1} x^{k-1}+\ldots+b_{1} x+b_{0}$ where $k \leq n$
- STEP 1

Divide the leading term of the polynomial $P(x)$ by the leading term of the divis or $D(x)$:
$\frac{a_{n} X^{n}}{b_{b} x^{k}}=q_{m} X^{m}$

- STEP 2

Multiply the divisor by this term: $D(x) \times q_{m} X^{m}$

- STEP 3

Subtract this from the original polynomial $P(x)$ to cancel out the leading term:
$R(x)=P(x)-D(x) \times q_{m} x^{m}$

- Repeat steps $1-3$ using the new polynomial $R(x)$ in place of $P(x)$ until the subtraction results in an expression for $R(x)$ with degree less than the divisor
- The quotient $Q(x)$ is the sum of the terms you multiplied the divisorby:

$$
Q(x)=q_{m} x^{m}+q_{m-1} x^{m-1}+\ldots+q_{1} x+q_{0}
$$

- The remainder $R(x)$ is the polynomial after the final subtraction

Division by linear functions

- If $P(x)$ has degree n and is divided by a linear function $(a x+b)$ then
- $\frac{P(x)}{a x+b}=Q(x)+\frac{R}{a x+b}$ where
- $a x+b$ is the divisor (degree 1)
- $Q(x)$ is the quotient (degree $n-1$)

Exam Papers Practice

- R is the remainder (degree 0)
- Note that $P(x)=Q(x) \times(a x+b)+R$

Division by quadratic functions

- If $P(x)$ has degree n and is divided by a quadratic function $\left(a x^{2}+b x+c\right)$ then
- $\frac{P(x)}{a x^{2}+b x+c}=Q(x)+\frac{e x+f}{a x^{2}+b x+c}$ where
- $a x^{2}+b x+c$ is the divisor (degree 2)
- $Q(x)$ is the quotient (degree $n-2$)
- $e x+f$ is the remainder (degree less than 2)
- The remainder will be linear (degree 1) if $e \neq 0$, and constant (degree 0) if $e=0$
- Note that $P(x)=Q(x) \times\left(a x^{2}+b x+c\right)+e x+f$

Division bypolynomials of degree $\boldsymbol{k} \leq \boldsymbol{n}$

- If $P(x)$ has degree n and is divided by a polynomial $D(x)$ with degree $k \leq n$
- $\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}$ where

- $D(x)$ is the divisor (degree k)
- $Q(x)$ is the quotient (degree $n-k$)
- $R(x)$ is the remainder (degree less than k)
- Note that $P(x)=Q(x) \times D(x)+R(x)$

Are there other methods for dividing polynomials?

- Synthetic division is a faster and shorter way of setting out a division when dividing by a linear term of the form
- To divide $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ by $(x-c)$:
- Set $b_{n}=a_{n}$
- Calculate $b_{n-1}=a_{n-1}+c \times b_{n}$
- Continue this iterative process $b_{i-1}=a_{i-1}+c \times a_{i}$
- The quotient is $Q(x)=b_{n} x^{n-1}+b_{n-1} x^{n-2}+\ldots+b_{2} x+b_{1}$ and the remainder is $r=b_{0}$
- Youcan also find quotients and remainders by comparing coefficients
- Given a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
- And a divisor $D(x)=d_{k} X^{k}+d_{k-1} x^{k-1}+\ldots+d_{1} x+d_{0}$
- Write $Q(x)=q_{n-k} x^{n-k}+\ldots+q_{1} x+q_{0}$ and $R(x)=r_{k-1} x^{k-1}+\ldots+r_{1} x+r_{0}$
- Write $P(x)=Q(x) D(x)+R(x)$
- Expand the right-hand side
- Equate the coefficients
- Solve to find the unknowns q's \& r's

Exam Tip

- In an exam you can use whichever method to divide polyno mills - just make sure your method is written clearly so that if you make a mistake you can still get a mark for your method!

Worked example
a) Perform the division $\frac{x^{4}+11 x^{2}-1}{x+3}$. Hence write $X^{4}+11 X^{2}-1$ in the form

$$
Q(x) \times(x+3)+R
$$

Step 1: what do we multiply x by to get x^{4} ?

$$
x + 3 \longdiv { x ^ { 4 } + 0 x ^ { 3 } + 1 1 x ^ { 2 } + 0 x - 1 }
$$

copying Note: $0 x^{3}$ and $0 x$ are used to keep like terms together.
Step 2: subtract $x^{3}(x+3)=x^{4}+3 x^{3}$

$$
\begin{aligned}
& \text { from } x^{4}+O x^{3} \\
& x + 3 \longdiv { x ^ { 4 } + O x ^ { 3 } + 1 1 x ^ { 2 } + O x - 1 } \\
& \frac{-\left(x^{4}+3 x^{3}\right)}{-3 x^{3}}
\end{aligned}
$$

Step 3: bring the $11 x^{2}$ down and return to step 1.

$$
x+3 \begin{array}{r}
x^{4}-3 x^{2}+20 x-60 \\
\frac{-\left(x^{4}+3 x^{3}\right)+11 x^{2}+0 x}{\downarrow}+1 \\
\frac{-\left(-3 x^{3}-11 x^{2}\right.}{20 x^{2}} \\
\frac{-\left(20 x^{2}+60 x\right)}{-60 x}-1 \\
-\frac{(-60 x-180)}{179}
\end{array}
$$

$$
\begin{aligned}
& x^{4}+11 x^{2}-1 \\
& =\left(x^{3}-3 x^{2}+20 x-60\right)(x+3)+179
\end{aligned}
$$

b)

Find the quotient and remainder for $\frac{x^{4}+4 x^{3}-x+1}{x^{2}-2 x}$. Hence write $x^{4}+4 x^{3}-x+1$ in the form $Q(x) \times\left(x^{2}-2 x\right)+R(x)$.

When dividing by quadratics use the same steps as above.

$-\frac{\left(x^{4}-2 x^{3}\right)}{6 x^{3}+0 x^{2}}$
$\frac{-\left(6 x^{3}-12 x^{2}\right)}{12 x^{2}-x}$
$\frac{-\left(12 x^{2}-24 x\right)}{23 x+1}$
$x^{4}+4 x^{3}-x+1$
$=\left(x^{2}+6 x+12\right)\left(x^{2}-2 x\right)+23 x+1$
Exam
Papers
Copyright
© 2024 Exam Papers Practice

2.7.3 Polynomial Functions

Sketching Polynomial Graphs

In exams you'll commonly be asked to sketch the graphs of different polynomial functions with and witho ut the use of yo ur GDC.

What's the relationship bet ween a polynomial's degree and its zeros?

- If a real polynomial $P(x)$ has degree n, it will have $n z e r o s$ which can be written in the form $a+b i$, where $a, b \in \mathbb{R}$
- Forexample:
- Aquadratic will have 2 zeros
- A cubic function will have 3 zeros
- A quartic will have 4 zeros
- Some of the zeros maybe repeated
- Every real polynomial of odd degree has at least one realzero

How do Isketch the graph of a polynomialfunction without a GDC?

- Suppose $P(x)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{1} x+a_{0}$ is a real polynomial with degree n
- To sketch the graph of a polynomial you need to know three things:
- The y-intercept
- Find this by substituting $x=0$ to get $\boldsymbol{y}=a_{0}$
- The roots
- Youcan find these by factorising or solving $\boldsymbol{y}=0$
- The shape
- This is determined by the degree (n) and the sign of the leading coefficient (a_{n})

How does the multiplicity of a real root affect the graph of the polynomial?

- The multiplicity of a root is the number of times it is repeated when the polynomial is facto rised
- If $X=k$ is a root with multiplicity m then $(X-k)^{m}$ is a factor of the polynomial
- The graph eithercrosses the x-axis ortouches the x-axis at a root $\boldsymbol{x}=\boldsymbol{k}$ where k is a real number
- If $x=k$ has multiplicity 1 then the graph crosses the x-axis at ($k, 0$)
- If $x=k$ has multiplicity 2 then the graph has a turning point at $(k, 0)$ so to uches the x-axis
- If $x=k$ has odd multiplicity $m \geq 3$ then the graph has a stationary point of inflection at (k, 0) so crosses the x-axis
- If $x=k$ has even multiplicity $m \geq 4$ then the graph has a turning point at ($k, 0$) so to uches the x-axis

How doldetermine the shape of the graph of the polynomial?

- Considerwhat happens as \boldsymbol{x} tends to $\pm \infty$
- If a_{n} is positive and n is even then the graph approaches fromthe top left and tends to the top right
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow+\infty} f(x)=+\infty$
- If a_{n} is negative and n is even then the graph approaches from the bottom left and tends to the bottom right
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow+\infty} f(x)=+\infty$
- If a_{n} is positive and n is odd then the graph approaches from the bottom left and tends to the top right
- $\lim f(x)=-\infty$ and $\lim f(x)=+\infty$
$x \rightarrow-\infty \quad x \rightarrow+\infty$
- If a_{n} is negative and n is odd then the graph approaches from the top left and tends to the bottomright
- $\lim f(x)=+\infty$ and $\lim f(x)=-\infty$

$$
x \rightarrow-\infty \quad x \rightarrow+\infty
$$

- Once youknow the shape, the real roots and the \boldsymbol{y}-intercept then you simplyconnect the points using a smooth curve
- There will be at least one turning point in-between each pair of roots
- If the degree is n then there is at most $\boldsymbol{n - 1}$ stationary points (some will be turning points)
- Every real polyno mial of even degree has at least one turning point
- Every real polynomial of odd degree bigger than 1 has at least one point of inflection
- If it is a calculatorpaper then you can use your GDC to find the coordinates of the turning points
- You won't need to find their location without a GDC unless the question asks you to

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

- Exam Tip

- If it is a calculator paper then you can use your GDC to find the coordinates of any turning points
- If it is the non-calculator paper then you will not be required to find the turning points when sketching unless specifically asked to

Exam Papers Practice

Worked example

a) The function f is defined by $f(x)=(x+1)(2 x-1)(x-2)^{2}$. Sketch the graph of $y=f(x)$.

Find the y-intercept
$x=0: y=(1)(-1)(-2)^{2}=-4$
Find the roots and determine if graphs crosses or touches the x-axis $(x+1)(2 x-1)(x-2)^{2}$
$(-1,0) \quad\left(\frac{1}{2}, 0\right) \quad(2,0)$
cross cross touch
Determine the shape by looking at the leading term
Leading term is $(x)(2 x)(x)^{2}=2 x^{4}$

b) The graph below shows a polynomial function. Find a possible equation of the polynomial.

Touches at $(-2,0) \quad(x+2)^{2}$ is a factor
Point of inflection at $(1,0)(x-1)^{3}$ is a factor
Write in the form of: $y=a(x+2)^{2}(x-1)^{3}$ Use the y-intercept to find a

$$
12=a(2)^{2}(-1)^{3} \quad \Rightarrow-4 a=12 \quad \therefore a=-3
$$

Copyright
© 2024 Exam Paper
$y=-3(x+2)^{2}(x-1)^{3}$

Solving Polynomial Equations

What is "The Fundamental Theorem of Algebra"?

- Everyreal polynomial with degree $n c$ an be factorised into ncomplex linear factors
- Some of which maybe repeated
- This means the polynomial will have nzeros (some may be repeats)
- Everyreal polynomial can be expressed as a product of real linear factors and real irreducible quadratic factors
- Anirreducible quadratic is where it does not have real roots
- The discriminant will be negative: $b^{2}-4 a c<0$
- If $a+b i(b \neq 0)$ is a zero of areal polynomial thenits complex conjugate a-biis also azero
- Everyreal polynomial of odd degree will have at least one realzero

Howdo Isolve polynomial equations?

- Suppose you have an equation $P(x)=0$ where $P(x)$ is a real polynomial of degree n
- $P(x)=a_{n} X^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
- You maybe given one zero oryoumight have to find a zero $x=k$ by substituting values into $P(x)$ until it equals 0
- If youknow a root then youknow a factor
- If youknow $\boldsymbol{x}=\boldsymbol{k}$ is a root then $(\boldsymbol{x}-\boldsymbol{k})$ is a factor
- If youknow $x=\boldsymbol{a}+\boldsymbol{b i}$ is a root then youknow a quadratic factor $(x-(a+b i))(x-(a-b i))$
- Which can be written as $((x-a)-b i)((x-a)+b i)$ and expanded quickly using difference of two squares
- You can then divide $P(\mathrm{x})$ by this factorto get ano ther factor
- For example: dividing a cubic by a linear factor will give you a quadratic factor
- You then maybe able to factorise this new factor

- ExamTip

- If a polynomial has three orless terms check whether a substitution canturn it into a quadratic
- For example: $X^{6}+3 x^{3}+2$ can be written as $\left(x^{3}\right)^{2}+3\left(x^{3}\right)+2$

Exam Papers Practice

Worked example

Given that $x=\frac{1}{2}$ is a zero of the polynomial defined by $f(x)=2 x^{3}-3 x^{2}+5 x-2$, find all three zeros of f.

$$
x=\frac{1}{2} \text { is a root } \therefore(2 x-1) \text { is a factor }
$$

Find the quadratic factor $\left(2 x^{3}-3 x^{2}+5 x-2\right)=(2 x-1)\left(a x^{2}+b x+c\right)$
Compare coefficients: $2 x^{3}=2 a x^{3} \quad \therefore a=1$

$$
-2=-c \quad \therefore c=2
$$

$$
5 x=2 c x-b x \Rightarrow 5=4-b \quad \therefore b=-1
$$

Solve the quadratic: $x^{2}-x+2=0$

2.7.4 Roots of Polynomials

Sum \& Product of Roots

Howdo Ifind the sum \& product of roots of polynomials?

- Suppose $P(x)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{1} x+a_{0}$ is a polynomial of degree n with n roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$
- The polynomial is written as $\sum_{r=0}^{n} a_{r} X^{r}=0, a_{n} \neq 0$ in the formula booklet
- a_{n} is the coefficient of the leading term
- a_{n-1} is the coefficient of the \boldsymbol{x}^{n-1} term
- Be careful: this could be equal to zero
- a_{0} is the constant term
- Be careful: this could be equal to zero
- Infactorised form: $P(x)=a_{n}\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$
- Comparing coefficients of the x^{n-1} term and the constant term gives
- $a_{n-1}=a_{n}\left(-\alpha_{1}-\alpha_{2}-\ldots-\alpha_{n}\right)$
- $a_{0}=a_{n}\left(-\alpha_{1}\right) \times\left(-\alpha_{2}\right) \times \ldots \times\left(-\alpha_{n}\right)$
- The sum of the roots is given by:
- $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}=-\frac{a_{n-1}}{a_{n}}$
- The product of the roots is given by:

$$
\begin{aligned}
& -\alpha_{1} \times \alpha_{2} \times \ldots \times \alpha_{n}=\frac{(-1)^{n} a_{0}}{a_{n}} \\
& \text { both of these formulae are in yo ur formula booklet }
\end{aligned}
$$

Howcan Ifind unknowns if lam giventhe sum and/or product of the roots of a
polynomial? polynomial?

- If you know a complex root of a real polynomial then its complex conjugate is another root
- Form two equations using the roots
- One using the sum of the roots formula
- One using the product of the roots formula
- Solve for anyunknowns

(9) Exam Tip

- Examiners might trick you by not having an x^{n-7} term or a constant term
- To make sure you do not get tricked you can write out the full polyno mial using 0 as a coefficient where needed
- For example: Write $x^{4}+2 x^{2}-5 x$ as $x^{4}+0 x^{3}+2 x^{2}-5 x+0$

Worked example

$2-3 \mathrm{i}, \frac{5}{3} \mathrm{i}$ and α are three roots of the equation
$18 x^{5}-9 x^{4}+32 x^{3}+794 x^{2}-50 x+k=0$.
a) Use the sum of all the roots to find the value of α.

It is a real polynomial so if $a+b i$ is a root then $a-b i$ is also a root
Roots: $2-3 i, 2+3 i, \frac{5}{3} i,-\frac{5}{3} i, \alpha$

$(2-3 i)+(2+3 i)+\left(\frac{5}{3} i\right)+\left(-\frac{5}{3} i\right)+\alpha=\frac{-(-9)}{18}$
$4+\alpha=\frac{1}{2}$
$\alpha=-\frac{7}{2}$
b) Use the product of all the roots to find the value of \boldsymbol{k}.

$$
\text { Formula booklet } \begin{array}{l|l|l|l}
\begin{array}{l}
\text { Sum \& product of the } \\
\text { roots of polynomial } \\
\text { equations of the form } \\
\sum_{r=0}^{n} a x_{1}=0
\end{array} & \text { product is } \frac{(-1)^{n} a_{0}}{a_{n}} & \begin{array}{ll}
18 x^{5}-9 x^{4}+32 x^{3}+794 x^{2}-50 x+k \\
a_{n}=18 \quad n=5
\end{array}
\end{array}
$$

$$
(2-3 i)(2+3 i)\left(\frac{5}{3} i\right)\left(-\frac{5}{3} i\right)\left(-\frac{7}{2}\right)=\frac{(-1)^{5} k}{18}
$$

$$
(13)\left(\frac{25}{9}\right)\left(-\frac{7}{2}\right)=\frac{-k}{18}
$$

$$
-\frac{2275}{18}=-\frac{k}{18}
$$

$$
k=2275
$$

