

Page 1 of 6

2.7 Dictionaries

Name: ________________________

Class: ________________________

Date: ________________________

Time: 70 minutes

Marks: 37 marks

Comments:

Page 2 of 6

Q1.
(a) This question refers to the subroutine CreateTileDictionary.

The points values for the letters J and X are to be changed so that they are not
worth as many points as the letters Z and Q.

Adapt the subroutine CreateTileDictionary so that the letters J and X are worth 4

points instead of 5 points.

Test that the changes you have made work:
• run the Skeleton Program
• enter 2 at the main menu

• enter 1 to view the letter values.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the amended subroutine
CreateTileDictionary.

(1)

(ii) SCREEN CAPTURE(S) showing the results of the requested test.

(1)

(b) This question refers to the subroutine Main.

Currently each player starts with 15 letter tiles. In the Main subroutine

StartHandSize is set to a value of 15.

Change the subroutine Main so that the user can choose what the value for

StartHandSize will be.

Before the main menu is displayed and before the first iteration structure in Main the

message “Enter start hand size: ” should be displayed and the user's input

should be stored in StartHandSize. This should happen repeatedly until the user

enters a value for the start hand size that is between 1 and 20 inclusive.

Test that the changes you have made work:

• run the Skeleton Program
• enter 0 when asked to enter the start hand size

• enter 21 when asked to enter the start hand size

• enter 5 when asked to enter the start hand size

• enter 1 at the main menu.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the amended subroutine Main.

(4)

(ii) SCREEN CAPTURE(S) showing the requested test. You must make sure that
evidence for all parts of the requested test is provided in the SCREEN
CAPTURE(S).

(1)

Page 3 of 6

(c) This question refers to the subroutine CheckWordIsValid.

When a player enters a word, a linear search algorithm is used to check to see if the
word entered is in the list of AllowedWords. The subroutine CheckWordIsValid is to

be changed so that it uses a more time-efficient search algorithm.

Change the CheckWordIsValid subroutine so that it uses a binary search algorithm

instead of a linear search algorithm.

You must write your own search routine and not use any built-in search function
that might be available in the programming language you are using.

Each item in AllowedWords that is compared to the word that the user entered

should be displayed on the screen.

Figure 2 shows examples of how the new version of CheckWordIsValid should

work if AllowedWords contained the items shown in Figure 1.

Figure 1

BIG

BUG

FED

GET

JET

NOT

SIP

WON

Figure 2

1) If the user enters the word BIG then a value of True should be

returned and the words GET, BUG, BIG should be displayed, in that
order.

2) If the user enters the word JET then a value of True should be

returned and the words GET, NOT, JET should be displayed, in that
order.

3) If the user enters the word ZOO then a value of False should be

returned and the words GET, NOT, SIP, WON should be displayed, in
that order.

Test that the changes you have made work:

• run the Skeleton Program

• if you have answered part (b), enter 15 when asked to enter the start hand

size; if you have not answered part (b) yet then skip this step
• enter 2 at the main menu

• enter the word jars.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the amended subroutine
CheckWordIsValid.

(8)

(ii) SCREEN CAPTURE(S) showing the requested test.

Page 4 of 6

(1)

(d) This question extends the functionality of the game.

After spelling a valid word the player decides which one of four options to select to
determine how many tiles will be added to their hand. Before choosing they can look
at the values of the tiles.

It would help the player make their decision if they were aware of how useful each
letter was by knowing the frequency with which each letter appears in the list of
allowed words.

The program is to be extended so that when the player chooses to view the tile
values they are also shown the number of times that each letter appears in the list of
allowed words.

What you need to do

Task 1
Create a new subroutine called CalculateFrequencies that looks through the list

of allowed words and displays each of the 26 letters in the alphabet along with the
number of times that the letter appears in the list of allowed words, which the
subroutine has calculated.

Task 2

Modify the DisplayTileValues subroutine so that after displaying the tile values it

also calls the CalculateFrequencies subroutine.

Task 3
Test that the changes you have made work:

• run the Skeleton Program
• if you have answered part (b), enter 15 when asked to enter the start hand

size; if you have not answered part (b) yet then skip this step
• enter 2 at the main menu

• enter 1 to display the letter values.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the new subroutine
CalculateFrequencies, the amended subroutine DisplayTileValues and

any other subroutines you have modified when answering this question.

(8)

(ii) SCREEN CAPTURE(S) showing the requested text.

(1)

(e) The scoring system for the game is to be changed so that if a player spells a valid
word they score points for all valid words that are a prefix of the word entered. A
prefix is the first x characters of a word, where x is a whole number between one
and the number of characters in the word.

In the Skeleton Program, AllowedWords contains the list of valid words that have

been read in from the Data File aqawords.txt.

Example

Page 5 of 6

If the user enters the word TOO they will be awarded points for the valid words TOO
and TO as TO is a prefix of the word TOO. They will not be awarded points for the
word OO even though it is a valid word and is a substring of TOO because it is not a
prefix of TOO.

Example
If the user enters the word BETTER they will be awarded points for the words
BETTER, BET and BE as these are all valid prefixes of the word entered by the
user. They would not be awarded points for BETT or BETTE as these are not valid
English words. They would not be awarded points for BEER as even though it is

contained in the word BETTER it is not a prefix.

Example
If the user enters the word BIOGASSES they will be awarded points for the words
BIOGASSES, BIOGAS, BIOG, BIO and BI as these are all valid prefixes of the word
entered by the user. They would not be awarded points for BIOGA, BIOGASS or
BIOGASSE as these are not valid English words. They would not be awarded points
for GAS as even though it is contained in the word BIOGASSES it is not a prefix.

Example
If the user enters the word CALMIEST they will not be awarded any points as even
though CALM at the start is a valid word the original word entered by the user,
CALMIEST, is not.

Example

If the user enters the word AN they will be awarded points for the word AN. They
would not be awarded points for A even though A at the start is a valid word as
points are only awarded for words that are at least two letters long.

What you need to do

Task 1
Write a recursive subroutine called GetScoreForWordAndPrefix that, if given a

valid word, returns the score of the word added to the score for any valid words that
are prefixes of the word.

To get full marks for this task the GetScoreForWordAndPrefix subroutine must

make use of recursion in an appropriate way to calculate the score for any prefixes
that are also valid words.

If your solution uses an alternative method to recursion you will be able to get most
but not all of the available marks for this question.

Task 2
Modify the UpdateAfterAllowedWord subroutine so that it calls the new

GetScoreForWordAndPrefix subroutine instead of the GetScoreForWord

subroutine.

Task 3
Test that the changes you have made to the program work:

• run the Skeleton Program
• if you have answered part (b), enter 15 when asked to enter the start hand

size; if you have not answered part (b) yet then skip this step
• enter 2 at the main menu

• enter the word abandon

• enter 4 so that no tiles are replaced.

Page 6 of 6

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the new subroutine
GetScoreForWordAndPrefix, the amended subroutine

UpdateAfterAllowedWord and any other subroutines you have modified

when answering this question.

(11)

(ii) SCREEN CAPTURE(S) showing the results of the requested test.

(1)

(Total 37 marks)

