- =

EXAM PAPERS PRACTICE

2.7 Dictionaries Mark Scheme

Page 1 of 26

Mark schemes

Q1.

@ @O Mark is for AO3 (programming)

Selection structure with correct condition(s) (9, 23) added in suitable
place and value of 4 assigned to two tiles in the dictionary;

R. if any other tile values changed

Python 2
def CreateTileDictionary() :
TileDictionary = dict ()
for Count in range(26):
if Count in [O, 4, 8, 13, 14, 17, 18, 19]:
TileDictionary[chr (65 + Count)]
elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

I
—

TileDictionary[chr (65 + Count)] = 2
elif Count in [5, 7, 10, 21, 22, 247:

TileDictionary[chr (65 + Count)] = 3
elif Count in [9, 23]:

TileDictionary|[c 4

else:
TileDictionary([chr (65 + Count)
return TileDictionar

Python 3
def CreateTileDictiona
TileDictionary = dict ()

for Count in ra
if Count 1in [A A ’
TileDictio y[chr (65 + Count)] =1
elif Count [, 2, 3, 6, 11, 12 15 207 :
TileDictionary[chr (65 + Count =

XAM BB ERS & SHACTICE

TileDictionary[chr (65 + Count)] = 4
else:
TileDictionary[chr (65 + Count)] = 5
return TileDictionary

8, 19]:

Visual Basic
Function CreateTileDictionary () As Dictionary(Of Char,
Integer)
Dim TileDictionary As New Dictionary(Of Char, Integer) ()
For Count = 0 To 25
If Array.IndexOf ({0, 4, 8, 13, 14, 17, 18, 19}, Count)
> -1 Then
TileDictionary.Add (Chr (65 + Count), 1)
ElseIf Array.IndexOf ({1, 2, 3, 6, 11, 12, 15, 20}, Count)
> -1 Then
TileDictionary.Add (Chr (65 + Count), 2)
ElselIf Array.IndexOf ({5, 7, 10, 21, 22, 24},
Count) > -1 Then
TileDictionary.Add (Chr (65 + Count), 3)
ElseIf Array.IndexOf ({9, 23}, Count) > -1 Then
TileDictionary.Add (Chr (65 + Count), 4)
Else

Page 2 of 26

TileDictionary.Add (Chr (65 + Count), 5)
End If
Next
Return TileDictionary
End Function

C#
private static void CreateTileDictionary (ref Dictionary<char,
int> TileDictionary)
{
int[] Valuel =
int[] Value2
int[] Value3
int[] Value4

4, 8, 13, 14, 17, 18, 19 };
2, 3, 6, 11, 12, 15, 20 };
7, 10, 21, 22, 24 };
2 .

o

P e
O o= O
~ 0~ 0~

~

for (int Count = 0; Count < 26; Count++)

{ if (Valuel.Contains (Count))
{ TileDictionary.Add((char) (65 + Count), 1);
;lse if (Value2.Contains (Count))

{
TileDictionary.Add((char) (65 + Count), 2);

TileDictio y.Add ((char) (65 + Count), 5);

EXAM PAPERS PRACTICE

Map createTileDictionary ()
{

Map<Character, Integer> tileDictionary = new
HashMap<Character, Integer> () ;

for (int count = 0; count < 26; count++)

{
switch (count) {
case 0:
case 4:
case 8:
case 13:
case 14:
case 17:
case 18:
case 19:
tileDictionary.put ((char) (65 + count), 1);
break;
case 1:
case 2:
case 3:
case 6:
case 11:

Page 3 of 26

case 12:

case 15:

case 20:
tileDictionary.put ((char) (65 + count), 2);
break;

case 5:

case 7:

case 10:

case 21:

case 22:

case 24:
tileDictionary.put ((char) (65 + count), 3);
break;

case 9:

case 23:
tileDictionary.put((char) (65 + count), 4);
break;

default:
tileDictionary.put ((char) (65 + count), 5);
break;

}
}
return tileDictionary;

}

Pascal / Delphi
function CreateTileDic
var
TileDictionary
Count : dinteger;
begin
TileDictionary := reate () ;
for Count := 0 to 25 do
begin
case coun
0, 4,
TileDictionary

Dictionary;

T

3, 14, 17, 18, 19:
(chr (65 + count), 1);

;7 6, 11, 12, 15, 20: TileDictionary.Add (chr (
+ count)

XAM.-BAPERS PRACTIC E

(ii)

9, 23: TileDictionary.Add(chr (65 + count), 4);
else TileDictionary.Add(chr (65 + count), 5);
end;
end;
CreateTileDictionary := TileDictionary;
end;

Mark is for AO3 (evaluate)

x SCREEN CAPTURE **

Must match code from part (a)(i), including prompts on screen capture
matching those in code.

Code for part (a)(i) must be sensible.

Screen captures showing the requested test being performed and the
correct points values for J, X, Z and Q are shown; I. order of letters

TILE VALUES

Points for X: 4
Points for R: 1

Page 4 of 26

Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for
Points for

NwoggwnoaazmdgzcuomnmHBERKPXIZNO
PR ANNMNMNWRRFWORNNWORENWERE WND OO

Either:
enter the word y
press 1 to display the letter ues OR
press 4 to view
press. ... to view
press 0 to fill game.

) O All marks for AO3 (pr
lterative structure wi ne correct condition added in suitable place;

lterative structure with second correct condition and logical connective;

DA Dt i ks oyl sy G
place before'iterative s re, A any suitable m

StartHandSize assigned user-entered value inside iterative structure;

Max 3 if code contains errors

Python 2
StartHandSize = int(raw_input ("Enter start hand size: "))

while StartHandSize < 1 or StartHandSize > 20:
StartHandSize = int (raw_input ("Enter start hand size: "))

Python 3

StartHandSize = int (input ("Enter start hand size: "))
while StartHandSize < 1 or StartHandSize > 20:
StartHandSize = int (input ("Enter start hand size: "))

Visual Basic

Page 5 of 26

Do
Console.Write ("Enter start hand size: ")
StartHandSize = Console.ReadLine ()

Loop Until StartHandSize >= 1 And StartHandSize <= 20

C#

do
{
Console.Write ("Enter start hand size: ");
StartHandSize = Convert.ToInt32 (Console.ReadLine());
} while (StartHandSize < 1 || StartHandSize > 20);

Java

do {
Console.println(&"Enter start hand size: &");
startHandSize = Integer.parseInt(Console.readLine())
} while (startHandSize < 1 || startHandSize > 20);

Pascal / Delphi

StartHandSize := 0;

Choice := ''";
while (StartHandSize < Size > 20) do
begin

write ('Enter start
readln (StartHandSi
end;

(i) Mark is for AO3 (e

**xx SCREEN CAPTURE **+*

XA N ersie RS S RACTICE

Code for part (b)(i) must be sensible.

Screen capture(s) showing that after the values 0 and 21 are entered the
user is asked to enter the start hand size again and then the menu is
displayed;

++++++++++H
+ Welcome to the WORDS WITH AQA game +
e B o o o

Enter start hand size: O
Enter start hand size: 21
Enter start hand size: 5

1. Play game with random start hand
2. Play game with training start hand

Page 6 of 26

9. Quit
Enter your choice: 1

Player One it is your turn.

() () All marks for AO3 (programming)

1. Create variables to store the current start, mid and end points; A. no
variable for midpoint if midpoint is calculated each time it is needed in

the code

2. Setting correct initial values for start and end variables;

3. lterative structure with one correct condition (either word is valid or
start is greater than end); R. if code is a linear search

4. lterative structure with 2™ correct condition and correct logic;

5. Inside iterative structure, correctly calculate midpoint between start
and end;

A. mid-point being either the position before or the position after
the exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. Inside iterative struct i
compares word at mi
searched for;

7. Values of start and e
circumstances;

8. True is returned if mal
returned under any ot

ion structure that
ith word being

under correct

d found and True is not

I. missing statement t

Max 7 if code contains errors

Alternative answer using recursion

XAM E2ARERS PRACLICE

passed as parameters to subroutine; A. no variable for midpoint if
midpoint is calculated each time it is needed in the code A. midpoint as
parameter instead of as local variable

2. Initial subroutine call has values of 0 for startpoint parameter and
number of words in A11owedWords for endpoint parameter;

3. Selection structure which contains recursive call if word being
searched for is after word at midpoint;

4. Selection structure which contains recursive call if word being
searched for is before word at midpoint;

5. Correctly calculate midpoint between start and end;
A. midpoint being either the position before or the position after the
exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. There is a selection structure that compares word at midpoint
position in list with word being searched for and there is no
recursive call if they are equal with a value of True being returned;

7. In recursive calls the parameters for start and end points have
correct values;

Page 7 of 26

8. There is a selection structure that results in no recursive call and
False being returned if it is now known that the word being
searched for is not in the list;

Note for examiners: mark points 1, 2, 7 could be replaced by recursive
calls that appropriately half the number of items in the list of words
passed as a parameter — this would mean no need for start and end
points. In this case award one mark for each of the two recursive calls if
they contain the correctly reduced lists and one mark for the correct use
of the length function to find the number of items in the list. These marks
should not be awarded if the list is passed by reference resulting in the
original list of words being modified.

I. missing statement to display current word
Max 7 if code contains errors

Note for examiners: refer unusual solutions to team leader

Python 2
def CheckWordIsValid (Word, AllowedWords) :
ValidWord = False

Start = 0
End = len (AllowedWor
while not ValidWord and Start <= E
Mid = (Start + End 2
print AllowedWords
if AllowedWords [Mig
ValidWord = True
elif Word > AllowedW
Start = Mid +
else:
End = Mid
return ValidW

Python 3
d Checkw I " lowedW)
XAM: FAPERS PRACTICE
Start = 0
End = len(AllowedWords) - 1
while not ValidWord and Start <= End:
Mid = (Start + End) // 2
print (AllowedWords [Mid])
if AllowedWords[Mid] == Word:
ValidWord = True
elif Word > AllowedWords[Mid]:
Start = Mid + 1
else:
End = Mid - 1
return ValidWord

Visual Basic
Function CheckWordIsValid (ByVal Word As String, ByRef
AllowedWords As List (Of String)) As Boolean

Dim ValidWord As Boolean = False

Dim LStart As Integer = 0

Dim IMid As Integer

Dim LEnd As Integer = Len(AllowedWords) - 1

While Not ValidWord And LStart <= LEnd

IMid = (LStart + LEnd) \ 2

Page 8 of 26

Console.WritelLine (AllowedWords (ILMid))
If AllowedWords (LMid) = Word Then
ValidWord = True
Elself Word > AllowedWords (LMid) Then
LStart = IMid + 1
Else
LEnd = ILMid - 1
End If
End While
Return ValidWord
End Function

C#
private static bool CheckWordIsValid(string Word,
List<string> AllowedWords)
{
bool ValidWord = false;
int Start = 0;
int End = AllowedWords.Count - 1;
int Mid = 0;
while (!ValidWord && Start <= End)
{
Mid = (Start + End) / 2;
Console.WriteLine (AllowedWords[Mid]) ;
if (AllowedWords[Mid] == Word)
{

ValidWord = true

}
else if (string.Co Al

{
}

else

{
End = Mid -

Start = Mid + 1;

}
}

return Valid

XAM. APERS RACTICE

boolean checkWordIsValid(String word, String[] allowedWords)
{
boolean validWord = false;
int start = 0;
int end = allowedWords.length - 1;
int mid = 0;
while (!'validWord && start <= end)
{
mid = (start + end) / 2;
Console.println(allowedWords[mid]) ;
if (allowedWords[mid] .equals (word))
{
validWord = true;
}
else if (word.compareTo (allowedWords[mid]) > 0)
{
start = mid + 1;
}
else
{
end = mid -1;
}

Page 9 of 26

}

return validWord;

}

Pascal / Delphi
function CheckWordIsValid (Word : string; AllowedWords : array
of string) : boolean;
var
ValidWord : boolean;
Start, Mid, EndValue : integer;
begin
ValidWord := False;
Start := 0;
EndValue := length(AllowedWords) - 1;
while (not(ValidWord)) and (Start <= EndValue) do
begin
Mid := (Start + EndValue) div 2;
writeln (AllowedWords [Mid]) ;
if AllowedWords[Mid] = Word then
ValidWord := True
else if Word > AllowedWords|[Mid] then
Start := Mid + 1
else
EndValue := Mid - 1;
end;
CheckWordIsValid :
end;

(i) Mark is for AO3 (evaluate

**** SCREEN CAPTURE **
Must match code from part
matching those in code.
Code for part (c)(i) m

pts on screen capture

R. if comparison w not shown in screen capture r

Screen capture(s) show |n§ that the word “jars” was entered and the

XA Nk IR o i Gl A E

“JACARANDA’, “JAMBEUX”, “JAPONICA”, “JAROVIZE”, “JASPER”,
“JARTA”, “JARRAH”, “JARRINGLY”, “JARS” are displayed in that order;

A. “MALEFICIAL", “DONGOLA’, “HAEMAGOGUES”,
“INTERMINGLED”, “LAGGERS”, “JOULING”, “ISOCLINE”, “JAUNCE”,
“JACARE”, “JAMBING”, “JAPPING”, “JAROVIZING”, “JASPERISES”,
“JARVEY”, “JARRINGLY”, “JARTA”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

ALTERNATIVE ANSWERS (for different versions of text file)

Screen capture(s) showing that the word “jars” was entered and the
words “MALEATE”, “DONDER”, “HADST”, “INTERMENDIS”, “LAGAN”",
“JOTTERS”, “ISOCHROMATIC”, “JASPERS”, “JABBING”, “JALOUSIE”,
“JAPANISES”, “JARGOONS”, “JARRED”, “JASIES”, “JARUL”, “JARS”
are displayed in that order;

A. “MALEATE”, “DONDERED”, “HAE”, “INTERMEDIUM”, “LAGANS”,
“JOTTING”, “ISOCHROMOSONES”, “JASPERWARES”, “JABBLED”,
“JALOUSING”, “JAPANIZED”, “JARINA", “JARRINGS”, “JASMINES”,

Page 10 of 26

“JARVEYS”, “JARTAS”, “JARSFUL”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

Screen capture(s) showing that the word “jars” was entered and the
words “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATION”,
“JOURNALS”, “JAMAICA”, “JEWELLERY”, “JEAN”, “JAR”, “JAY”,
“JASON”, “JARS” are displayed in that order;

A. “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATIONS”, “JOURNEY”,
“JAMIE”, “JEWISH”, “JEEP”, “JAVA’, “JAPAN”, “JARS” being displayed
if alternative answer for mark point 5 in part (c)(i) used

Either:
enter the word you would like to play OR
press 1 to display the letter values OR
press 4 to view the tile queue OR
press 7 to view your tiles again OR
press 0 to fill hand and stop the game.
>jars

MALEFICIAL
DONGLES
HAEMAGOGUE
INTERMINGLE
LAGGER
JOULED
ISOCLINAL
JAUKING
JACARANDA
JAMBEUX
JAPONICA
JAROVIZE
JASPER
JARTA
JARRAH
JARRINGLY
JARS

XAM-BPAPERS PRACTICE

Do you want to:
replace the tiles you used (1) OR
get three extra tiles (2) OR
replace the tiles you used and get three extra tiles (3) OR
get no new tiles (4)?

d o All marks for AO3 (programming)

1. Creating new subroutine called CalculateFrequencies with
appropriate interface; R. if spelt incorrectly I. case

2. Iterative structure that repeats 26 times (once for each letter in the
alphabet);

3. lterative structure that looks at each word in A11owedWords;

4, lterative structure that looks at each letter in a word and suitable

nesting for iterative structures;

5. Selection structure, inside iterative structure, that compares two
letters;
A. use of built-in functions that result in same functionality as mark
points 4 and 5;;

Page 11 of 26

6. Inside iterative structure increases variable used to count
instances of a letter;

7. Displays a numeric count (even if incorrect) and the letter for each
letter in the alphabet; A. is done in sensible place in
DisplayTileValues

8. Syntactically correct call to new subroutine from
DisplayTileValues; A. any suitable place for subroutine call

Alternative answer
If answer looks at each letter in A11lowedWords in turn and maintains a

count (eg in array/list) for the number of each letter found then mark
points 2 and 5 should be:
2. Creation of suitable data structure to store 26 counts.

5. Appropriate method to select count that corresponds to current
letter.

Max 7 if code contains errors

Python 2
def CalculateFrequencies (AllowedWords) :

print "Letter frequencies in the allowed words are:"

for Code in range (2
LetterCount = 0

LetterToFind = chr(Code + 65)

for Word in Allowe

for Letter in Wo

if Letter ==

b>LetterCoun

sys.stdout.write (LetterToFind + !

+ LetterCount)

llowedWords) :
print ()

print ("TILE V
print ()
for Letter, Points in TileDictionary.items (

XAM:FARPERSF RACTICE

print (
CalculateFrequenc1es(AllowedWords)

S")

Alternative answer
def CalculateFrequencies (AllowedWords) :
for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
Count=0
for Word in AllowedWords:
NumberOfTimes = Word.count (Letter)
Count = Count + NumberOfTimes
sys.stdout.write (Letter + " " + str(Count))

Alternative answer
def CalculateFrequencies (AllowedWords) :
Counts = []
for a in range(26):
Counts.append (0)
for Word in AllowedWords:
for Letter in Word:
Counts[ord (Letter) - 65] +=1
for a in range(26):
sys.stdout.write(chr(a + 65) + " " + str(Counts[a]))

Page 12 of 26

Python 3
def CalculateFrequencies (AllowedWords) :
print ("Letter frequencies in the allowed words are:")
for Code in range (26):
LetterCount = 0
LetterToFind = chr (Code + 65)
for Word in AllowedWords:
for Letter in Word:

if Letter == LetterToFind:
LetterCount += 1
print (LetterToFind, " ", LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords) :

print ()
print ("TILE VALUES")
print ()
for Letter, Points in TileDictionary.items() :
print ("Points for " + Letter + ": " + str(Points))
print ()

CalculateFrequencies (AllowedWords)

Alternative answer
def CalculateFrequencies (AllowedWords) :

for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

Count=0

for Word in Allowe

NumberOfTimes = 5

Count = Count + NumberOfTimes

print (Letter,Count

Alternative answer
def CalculateFrequenci
Counts = []
for a in range(2
Counts.appen
for Word in Al edWords :
for Letter ord:
Counts[ord (Letter) - 65] +=1
or a in

XAM ==& ERpSs-DRACTICE

Visual Basic
Sub CalculateFrequencies (ByRef AllowedWords As List (Of
String))
Dim LetterCount As Integer
Dim LetterToFind As Char
Console.WritelLine ("Letter frequencies in the allowed words
are:")
For Code = 0 To 25
LetterCount = 0
LetterToFind = Chr (Code + 65)
For Each Word In AllowedWords
For Each Letter In Word
If Letter = LetterToFind Then
LetterCount += 1
End If
Next
Next
Console.WritelLine (LetterToFind & " " & LetterCount)
Next
End Sub

rd

Sub DisplayTileValues (ByVal TileDictionary As Dictionary (Of

Page 13 of 26

Char, Integer), ByRef AllowedWords As List (Of String))
Console.WritelLine ()
Console.WriteLine ("TILE VALUES")
Console.WriteLine ()
For Each Tile As KeyValuePair (Of Char, Integer) In
TileDictionary
Console.WritelLine ("Points for " & Tile.Key & ": " &
Tile.Value)
Next
Console.WriteLine ()
CalculateFrequencies (AllowedWords)
End Sub

Alternative answer
Sub CalculateFrequencies (ByRef AllowedWords As List (Of
String))
Dim NumberOfTimes, Count As Integer
Console.WritelLine ("Letter frequencies in the allowed words
are:")
For Each Letter In "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Count = 0
For Each Word In AllowedWords
NumberOfTimes = Word.Split (Letter) .Length - 1
Count += NumberOfTimes
Next
Console.WriteLine (
Next
End Sub

unt)

Alternative answer
Sub CalculateFrequenci ow
String))
Dim Counts(25) As Integer
For Count = 0 To
Counts (Count)
Next
Console.Write
are:")
For Each Word In AllowedWords

XAM =ARERS PRACTICE

Next
Next
For count = 0 To 25
Console.WriteLine (Chr (count + 65) & " " & Counts(count))
Next
End Sub

ords As List (Of

("Letter frequencies in the allowed words

C#
private static void CalculateFrequencies (List<string>
AllowedWords)
{
Console.WritelLine ("Letter frequencies in the allowed words
are:");
int LetterCount = 0;
char LetterToFind;
for (int Code = 0; Code < 26; Code++)
{
LetterCount = 0;
LetterToFind = (char) (Code + 65);
foreach (var Word in AllowedWords)
{

foreach (var Letter in Word)

Page 14 of 26

{
if (Letter == LetterToFind)

{
LetterCount++;
}
}
}
Console.WritelLine (LetterToFind + " " + LetterCount);
}
}

private static void DisplayTileValues (Dictionary<char, int>
TileDictionary, List<string> AllowedWords)
{
Console.WriteLine () ;
Console.WritelLine ("TILE VALUES") ;
Console.WriteLine () ;
char Letter;
int Points;
foreach (var Pair in TileDictionary)
{
Letter = Pair.Key;
Points Pair.Value;
Console.WritelLine ("Points for " + Letter + ": " + Points);

}
CalculateFrequencies
Console.WriteLine() ;

Alternative answer

private static wvoid Ca
AllowedWords)
{

s (List<string>

Console.WriteLin j in the allowed words

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;
ter in Alphabet)

string Alphab
foreach (var

XAM :EB2APERS.-RRACTICE

{
LetterCount = LetterCount + (Words.Split (Letter) .Length

- 1);
}
Console.WriteLine (Letter + " " + LetterCount);

}

Alternative answer
private static void CalculateFrequencies (List<string>

AllowedWords)
{
List<int> Counts = new List<int>() ;
for (int i = 0; i < 26; i++)
{
Counts.Add (0) ;

}

foreach (var Words in AllowedWords)
foreach (var Letter in Words)

{
Counts|[(int)Letter - 65]++;

Page 15 of 26

}

}

for (int a = 0; a < 26; a++)

{
char Alpha =Convert.ToChar(a + 65);
Console.WriteLine (Alpha + " " + Counts[a]);

}

}

Java
void calculateFrequencies (String[] allowedWords)
{
int letterCount;
char letterToFind;
for (int count = 0; count < 26; count++)
{
letterCount = 0;
letterToFind = (char) (65 + count);
for (String word:allowedWords)
{
for (char letter : word.toCharArray())
{
if (letterToFind == letter)
{
letterCount++;
}
}
}
Console.println(le
letterCount);
}
}

requency: " +

void displayTileVa

allowedWozxrds)

{
Console.print H
Console.prin ("TILE VALUES") ;
Console.println() ;

XAMEAPERS PRACTICE

int points = (int)tileDictionary.get(letter);
Console.println("Points for " + letter + ": " + points);

ry, String[]

}
calculateFrequencies (allowedWords) ;
Console.println() ;

}

Alternative answer
void calculateFrequencies (String[] allowedWords)

{

int letterCount;
String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
for (char letter: alphabet.toCharArray())
{

letterCount = 0;

for (String word: allowedWords)

{

letterCount += word.split(letter + "").length - 1;

}
Console.println(letter + ", Frequency: " + letterCount) ;

Page 16 of 26

Alternative answer
void calculateFrequencies (String[] allowedWords)
{
int[] counts = new int[26];
for (String word: allowedWords)
{
for (char letter: word.toCharArray())
{
int letterPostion = (int)letter - 65;
counts[letterPostion] ++;

}

}

for (int count = 0; count < 26; count++)

{
char letter = (char) (65 + count);
Console.println(letter + ", Frequency: " + counts[count]) ;

}

}

Pascal / Delphi
procedure CalculateFrequencies (AllowedWords : array of
string) ;
var
Code, LetterCount : integer;
LetterToFind, Letter : char;
Wordj: string;
begin
writeln ('Letter frequencies in th
for Code := 0 to 2
begin
LetterCount :=
LetterToFind : od
for Word in AllowedWords do

llowed words are:');

Letter = LetterToFind then
LetterCount := LetterCount + 1;

XAM RARERS PRACTICE

end;
end;

(i) Mark is for AO3 (evaluate)

*+x SCREEN CAPTURE ****

Must match code from part (d)(i), including prompts on screen capture
matching those in code.

Code for part (d)(i) must be sensible.

Screen capture(s) showing correct list of letter frequencies are
displayed;

I. Ignore order of letter frequency pairs

I. any additional output eg headings like “Letter” and “Count”
Letter frequencies in the allowed words are:

A 188704
B 44953
C 98231
D 81731
E 275582

Page 17 of 26

28931

67910

60702

220483

4010

22076

127865

70700

163637

161752

73286

4104

170522

234673

159471

80636

22521

18393

6852

39772

11772

ither:

enter the word you would like to play OR
press 1 to display the letter values OR
press 4 to view the tile queue OR
pr iew i in_OR

0N X=ECHNWOWOoOZHXRgHI QM

pr 1 game.
>
ALTERNAT ANSWERS (£ i v ions of text file)
Letter £ ies in WO are:
A 18862
B 44923
C 98187
D 81686
E 27547
F 28899
G 67795
H 60627
I 220331

EXAM:?APERS PRACTICE

L 127

M 70679
N 163547
O 161720
P 73267

Q 4104

R 170461
S 234473
T 159351
U 80579
vV 22509
W 18377

X 6852

Y 39760
Z 11765
Either:

enter the word you would like to play OR
press 1 to display the letter values OR
press 4 to view the tile queue OR

press 7 to view your tiles again OR
press 0 to fill hand and stop the game.

Page 18 of 26

Letter frequencies in the allowed words are:
5299
1105
2980
2482
7523
909
1692
1399
5391
178
569
3180
1871
4762
4177
1992
122
4812
4999
4695
1898
835
607
246
999
128

NHKXEZI<CcHOW@WOWOZLEHE"gHTO™mEHODQE

Either:
enter the word y play OR
press 1 to displ ues OR
press 4 to view
press 7 to view your tiles aga
press.0.to fi

All marks for AO rogramming)

XAM”V'“QSAF’E%M“&RACTIC E

Correct subroutine call to GetScoreForWordandPrefix added in
UpdateAfterAllowedWord,

2. Result returned by GetScoreForiWordandPrefix added to
PlayerScore;

A. alternative names for subroutine GetScoreForWordAndPrefix if
match name of subroutine created

Creating new subroutine:

3. Subroutine GetScoreForiWordandPrefix created; R. if spelt
incorrectly I. case

4. All data needed (Word, TileDictionary, AllowedWords) iS
passed into subroutine via interface;

5. Integer value always returned by subroutine;

Base case in subroutine:
6. Selection structure for differentiating base case and recursive case

with suitable condition (word length of 0 // 1 // 2); R. if base case
will result in recursion

Page 19 of 26

7. If base case word length is 0 then value of O is returned by
subroutine and there is no recursive call // if base case word length
is 1 then value of 0 is returned by subroutine and there is no
recursive call // if base case word length is 2 the subroutine returns
0 if the two-letter word is not a valid word and returns the score for
the two-letter word if it is a valid word;

Recursive case in subroutine:

8. Selection structure that contains code that adds value returned by
call to GetScoreForWord to score if word is valid; A. no call to
subroutine GetScoreForWord if correct code to calculate score
included in sensible place in GetScoreForWordAndPrefix
subroutine R. if no check for word being valid

9. Call to GetScoreForWordAndPrefix

10. Result from recursive call added to score;

11. Recursion will eventually reach base case as recursive call has a
parameter that is word with last letter removed,;

How to mark question if no attempt to use recursion:

Mark points 1-5 same as for recursive attempt. No marks awarded for
mark points 6-11, instead award marks as appropriate for mark points
12-14.
12. Adds the score for the original word to
initial score to be the igi
subroutine GetScore
included in sensible p
subroutine. Note for
to check if the original word is valid
13. lterative structur
of the word; A.
14. |Inside iterativ
valid word, t

score once // sets the
word; A. no call to

e to calculate score
WordAndPrefix

o need for the answer

s where n is the length

2A.n
ucture adds score for current prefix word, if it is a
ore once; A. no call to GetScoreForWord if own

XAM JABERS PRACTICE

Max 8 if recursion not used in an appropriate way
11

Python 2
def UpdateAfterAllowedWord (Word, PlayerTiles, PlayerScore,
PlayerTilesPlayed, TileDictionary, AllowedWords) :
PlayerTilesPlayed += len (Word)
for Letter in Word:
PlayerTiles = PlayerTiles.replace(Letter, "", 1)
PlayerScore += GetScoreForWordAndPrefix (Word,
TileDictionary, AllowedWords)
return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix (Word, TileDictionary,
AllowedWords) :
if len(Word) <= 1:
return 0
else:
Score = 0
if CheckWordIsValid (Word, AllowedWords) :
Score += GetScoreForWord (Word, TileDictionary)

Page 20 of 26

Score += GetScoreForWordAndPrefix (Word[0:1len (Word) - 1],
TileDictionary, AllowedWords)
return Score

Alternative answer

def GetScoreForWordAndPrefix (Word,TileDictionary,
AllowedWords) :
Score = 0
if CheckWordIsValid (Word,AllowedWords) :
Score += GetScoreForWord (Word, TileDictionary)
if len(Word[:-1]) > O:
Score +=GetScoreForWordAndPrefix (Word[:-1],
TileDictionary,AllowedWords)
return Score

Python 3
def UpdateAfterAllowedWord (Word, PlayerTiles, PlayerScore,
PlayerTilesPlayed, TileDictionary, AllowedWords) :
PlayerTilesPlayed += len (Word)
for Letter in Word:
PlayerTiles = PlayerTiles.replace(Letter, "", 1)
PlayerScore += GetScoreForWordAndPrefix (Word,
TileDictionary, AllowedWords)
return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix (Wor Dictionary,
AllowedWords) :
if len(Word) <= 1:
return 0
else:

Score = 0

if CheckWordIsValid (Word, Allowe
Score += Ge

Score += GetS
TileDictionary,
return Scor

rds) :
leDictionary)
rd[0:len(Word) - 1],

XA SR e i T | CE

owedWo

Score =

if CheckWordIsValld(Word,AllowedWords).

Score += GetScoreForWord (Word, TileDictionary)
if len(Woxrd[:-1]) > O:

Score +=GetScoreForWordAndPrefix (Word[:-1],

TileDictionary,AllowedWords)

return Score

Visual Basic
Sub UpdateAfterAllowedWord(ByVal Word As String, ByRef
PlayerTiles As String, ByRef PlayerScore As Integer, ByRef
PlayerTilesPlayed As Integer, ByVal TileDictionary As
Dictionary (Of Char, Integer), ByRef AllowedWords As List (Of
String))

PlayerTilesPlayed += Len (Word)

For Each Letter In Word

PlayerTiles = Replace (PlayerTiles, Letter, "", , 1)

Next

PlayerScore += GetScoreForWordAndPrefix (Word,
TileDictionary, AllowedWords)
End Sub

Page 21 of 26

Function GetScoreForWordAndPrefix (ByVal Word As String, ByVal
TileDictionary As Dictionary (Of Char, Integer), ByRef
AllowedWords As List (Of String)) As Integer
Dim Score As Integer
If Len(Word) <= 1 Then
Return 0
Else
Score = 0
If CheckWordIsValid (Word, AllowedWords) Then
Score += GetScoreForWord (Word, TileDictionary)
End If
Score += GetScoreForWordAndPrefix (Mid (Word, 1, Len (Word)
- 1), TileDictionary, AllowedWords)
End If
Return Score
End Function

Alternative answer
Function GetScoreForWordAndPrefix (ByVal Word As String, ByVal
TileDictionary As Dictionary (Of Char, Integer), ByRef
AllowedWords As List (Of String)) As Integer
Dim Score As Integer = 0
If CheckWordIsValid (Word, AllowedWords) Then
Score += GetScoreForWord (Word, TileDictionary)
End If
If Len(Woxrd) -1.> 0
Score += GetScoreF
- 1), TileDictionary, AllowedWords)
End If
Return Score
End Function

id (Word, 1, Len (Word)

C#
private static voi
string PlayerTile
PlayerTilesPlaye
List<string> Al

ord(string Word, ref
, ref int
ictionary<char, int> TileDictionary,
edWords)

PlayerTilesPlayed = PlayerTilesPlared + Word.Len

XAM-PAPERS PRACTICE

PlayerTiles =
PlayerTiles.Remove (PlayerTiles.IndexOf (Letter), 1);
}
PlayerScore = PlayerScore + GetScoreForWordAndPrefix (Word,
TileDictionary, AllowedWords) ;
}

private static int GetScoreForWordAndPrefix (string Word,
Dictionary<char, int> TileDictionary, List<string>
AllowedWords)
{
int Score = 0;
if (Word.Length <= 1)
{
return O;
}
else
{
Score = 0;
if (CheckWordIsValid (Word, AllowedWords))
{

Score = Score + GetScoreForWord (Word, TileDictionary) ;

Page 22 of 26

}

Score = Score +
GetScoreForWordAndPrefix (Word.Remove (Word.Length - 1),
TileDictionary, AllowedWords) ;

return Score;

}
}

Alternative answer
private static int GetScoreForWordAndPrefix (string Word,
Dictionary<char, int> TileDictionary, List<string>
AllowedWords)
{

int Score = 0;

if (CheckWordIsValid (Word, AllowedWords))

{

Score = Score + GetScoreForWord(Word, TileDictionary) ;

}

if (Word.Remove (Word.Length - 1) .Length > 0)

{

Score = Score +
GetScoreForWordAndPrefix (Word.Remove (Word.Length - 1),
TileDictionary, AllowedWords) ;

}

return Score;

}

Java
int getScoreForWordAnd
String[] allowedWords)
{

int score = 0;

if (word.length() < 2)

{

}

else

{
if (checkWordIsValid (word, allowedWords))
BAPERS FRACTICE
XAM sco ets (woxrd,)
}
word = word.substring (0, word.length()-1);
return score + getScoreForWordAndPrefix (word,
tileDictionary, allowedWords) ;

}
}

, Map tileDictionary,

return 0;

void updateAfterAllowedWord (String word, Tiles
playerTiles,
Score playerScore, TileCount playerTilesPlayed, Map
tileDictionary,
String[] allowedWords)
{
playerTilesPlayed.numberOfTiles += word.length();
for (char letter : word.toCharArray())
{
playerTiles.playerTiles =
playerTiles.playerTiles.replaceFirst (letter+"", "");
}
playerScore.score += getScoreForWordAndPrefix (word,
tileDictionary, allowedWords) ;
}

Page 23 of 26

Alternative answer
int getScoreForWordAndPrefix (String word, Map tileDictionary,
String[] allowedWords)
{
int score = 0;
if (checkWordIsValid (word, allowedWords))
{
score += getScoreForWord(word, tileDictionary) ;
}
word = word.substring(0, word.length()-1);
if (word.length()>1)
{
score += getScoreForWordAndPrefix (word, tileDictionary,
allowedWords) ;
}
return score;

}

Pascal / Delphi
function GetScoreForWordAndPrefix (Word : string;
TileDictionary : TileDictionary; AllowedWords : array of
string) : integer;
var
Score : integer;
begin
if length(word) <=

Score := 0
else
begin
Score := 0;
if CheckWordIs edWords) then
Score := Sco ord (Word,
TileDictionary) ;

TileDictionary,
end;

GetScoreFo dAndPrefix

:= Score;

XAM.RARPERS.RRACTICE

(ii)

PlayerTiles : string; var PlayerScore : integer; var
PlayerTilesPlayed : integer; TileDictionary : TileDictionary;

var AllowedWords : array of string);
var
Letter : Char;
begin

PlayerTilesPlayed := PlayerTilesPlayed + length (Word);
for Letter in Word do
Delete (PlayerTiles,pos (letter, PlayerTiles),l);
PlayerScore := PlayerScore +
GetScoreForWordAndPrefix (Word, TileDictionary,
AllowedWords) ;
end;

Mark is for AO3 (evaluate)

*ix SCREEN CAPTURE ****

Must match code from part (e)(i), including prompts on screen capture
matching those in code.

Code for part (e)(i) must be sensible.

Screen capture(s) showing that the word abandon was entered and the

Page 24 of 26

new score of 78 is displayed;

Do you want to:

replace the tiles you used (1) OR

get three extra tiles (2) OR replace the tiles you used
and get three extra tiles (3) OR

get no new tiles (4)°?
>4

Your word was: ABANDON
Your new score is: 78

You have played 7 tiles so far in this game.

Press Enter to continue

[37]

EXAM PAPERS PRACTICE

Page 25 of 26

Examiner reports

Q1.

(@)

(b)

()

(d)

(e)

This was the first of the questions that required modifying the Skeleton Program. It
was a simple question that over 80% of students were able to answer correctly.
When mistakes were made this was normally because tiles other than just J and X
were also changed to be worth 4 points.

Like question (a), this question was normally well-answered with almost all student
getting some marks and about 75% obtaining full marks. Where students didn’t get
full marks this was normally due to the conditions on the loop being incorrect which
prevented the values of 1 and / or 20 from being valid.

For this question students had to replace the linear search algorithm used to check if
a word is in the list of allowed words with a binary search algorithm. An example of
how a binary search algorithm works was included on the question paper but if a
similar question is asked in the future that may not be done. A mixture of iterative
and recursive solutions were seen. The most common error made by students who
didn’t get full marks but made a good attempt at answering the question was to miss
out the condition that terminates the loop if it is now known that the word is not in
the list.

Students found question (d) easier than questions (|
good use of iteration and arrays / ien
variables to store the different lett
added code in their new subrouti
pass the list as a parameter to th
penalised.

nd (e). Better answers made
swers which used 26

get full marks. Some students
s of the text file rather than
not necessary but was not

ursive subroutine. If students answered
ursion they could still get 9 out of the 12 marks

Question (e) asked studen
the question without usin
available.

XANSEARERS . RRACTICE™

code that answers some part or parts of the question. For instance, in question (e)
students could get marks for creating a subroutine with the specified name and
calling that subroutine — even if the subroutine didn’t do anything. There are many
examples of subroutines and subroutine calls in the Skeleton Program that students
could have used to help them obtain some marks on this question.

A number of very well-written subroutines were seen that made appropriate use of
recursion and string handling. Some good recursive answers did not get full marks
because they did not include a check that the word / prefix passed as a parameter
was valid before the tile points included in the word were used to modify the score,
this meant that all prefixes would be included in the score and not just the valid
prefixes. Another frequent mistake came when students wrote their own code to
calculate the score for a prefix rather than use the existing subroutine included in the
Skeleton Program that calculated the score for a word — if done correctly full marks
could be obtained by doing this but a number of students made mistakes when
writing their own score-calculating code.

Page 26 of 26

