

Page 1 of 26

2.7 Dictionaries Mark Scheme

Page 2 of 26

Mark schemes

Q1.
(a) (i) Mark is for AO3 (programming)

Selection structure with correct condition(s) (9, 23) added in suitable
place and value of 4 assigned to two tiles in the dictionary;

R. if any other tile values changed
1

Python 2
def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

Python 3
def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

Visual Basic
Function CreateTileDictionary() As Dictionary(Of Char,

Integer)

 Dim TileDictionary As New Dictionary(Of Char, Integer)()

 For Count = 0 To 25

 If Array.IndexOf({0, 4, 8, 13, 14, 17, 18, 19}, Count)

> -1 Then

 TileDictionary.Add(Chr(65 + Count), 1)

 ElseIf Array.IndexOf({1, 2, 3, 6, 11, 12, 15, 20}, Count)

> -1 Then

 TileDictionary.Add(Chr(65 + Count), 2)

 ElseIf Array.IndexOf({5, 7, 10, 21, 22, 24},

 Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 3)

 ElseIf Array.IndexOf({9, 23}, Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 4)

 Else

Page 3 of 26

 TileDictionary.Add(Chr(65 + Count), 5)

 End If

 Next

 Return TileDictionary

End Function

C#
private static void CreateTileDictionary(ref Dictionary<char,

int> TileDictionary)

{

 int[] Value1 = { 0, 4, 8, 13, 14, 17, 18, 19 };

 int[] Value2 = { 1, 2, 3, 6, 11, 12, 15, 20 };

 int[] Value3 = { 5, 7, 10, 21, 22, 24 };

 int[] Value4 = { 9, 23 };

 for (int Count = 0; Count < 26; Count++)

 {

 if (Value1.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 1);

 }

 else if (Value2.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 2);

 }

 else if (Value3.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 3);

 }

 else if (Value4.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 4);

 }

 else

 {

 TileDictionary.Add((char)(65 + Count), 5);

 }

 }

}

Java
Map createTileDictionary()

{

 Map<Character,Integer> tileDictionary = new

HashMap<Character,Integer>();

 for (int count = 0; count < 26; count++)

 {

 switch (count) {

 case 0:

 case 4:

 case 8:

 case 13:

 case 14:

 case 17:

 case 18:

 case 19:

 tileDictionary.put((char)(65 + count), 1);

 break;

 case 1:

 case 2:

 case 3:

 case 6:

 case 11:

Page 4 of 26

 case 12:

 case 15:

 case 20:

 tileDictionary.put((char)(65 + count), 2);

 break;

 case 5:

 case 7:

 case 10:

 case 21:

 case 22:

 case 24:

 tileDictionary.put((char)(65 + count), 3);

 break;

 case 9:

 case 23:

 tileDictionary.put((char)(65 + count), 4);

 break;

 default:

 tileDictionary.put((char)(65 + count), 5);

 break;

 }

 }

 return tileDictionary;

}

Pascal / Delphi
function CreateTileDictionary() : TTileDictionary;

 var

 TileDictionary : TTileDictionary;

 Count : integer;

 begin

 TileDictionary := TTileDictionary.Create();

 for Count := 0 to 25 do

 begin

 case count of

 0, 4, 8, 13, 14, 17, 18, 19:

TileDictionary.Add(chr(65 + count), 1);

 1, 2, 3, 6, 11, 12, 15, 20: TileDictionary.Add(chr(65

+ count), 2);

 5, 7, 10, 21, 22, 24: TileDictionary.Add(chr(65 +

count), 3);

 9, 23: TileDictionary.Add(chr(65 + count), 4);

 else TileDictionary.Add(chr(65 + count), 5);

 end;

 end;

 CreateTileDictionary := TileDictionary;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (a)(i), including prompts on screen capture
matching those in code.
Code for part (a)(i) must be sensible.

Screen captures showing the requested test being performed and the
correct points values for J, X, Z and Q are shown; I. order of letters

TILE VALUES

Points for X: 4

Points for R: 1

Page 5 of 26

Points for Q: 5

Points for Z: 5

Points for M: 2

Points for K: 3

Points for A: 1

Points for Y: 3

Points for L: 2

Points for I: 1

Points for F: 3

Points for H: 3

Points for D: 2

Points for U: 2

Points for N: 1

Points for V: 3

Points for T: 1

Points for E: 1

Points for W: 3

Points for C: 2

Points for G: 2

Points for P: 2

Points for J: 4

Points for O: 1

Points for B: 2

Points for S: 1

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

1

(b) (i) All marks for AO3 (programming)

Iterative structure with one correct condition added in suitable place;

Iterative structure with second correct condition and logical connective;

Suitable prompt displayed inside iterative structure or in appropriate
place before iterative structure; A. any suitable prompt

StartHandSize assigned user-entered value inside iterative structure;

Max 3 if code contains errors
4

Python 2
…

 StartHandSize = int(raw_input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(raw_input("Enter start hand size: "))

…

Python 3
…

 StartHandSize = int(input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(input("Enter start hand size: "))

…

Visual Basic

Page 6 of 26

…

Do

 Console.Write("Enter start hand size: ")

 StartHandSize = Console.ReadLine()

Loop Until StartHandSize >= 1 And StartHandSize <= 20

…

C#
…

do

{

 Console.Write("Enter start hand size: ");

 StartHandSize = Convert.ToInt32(Console.ReadLine());

} while (StartHandSize < 1 || StartHandSize > 20);

…

Java
…

 do {

 Console.println(&"Enter start hand size: &");

 startHandSize = Integer.parseInt(Console.readLine());

 } while (startHandSize < 1 || startHandSize > 20);

…

Pascal / Delphi
…

StartHandSize := 0;

Choice := '';

while (StartHandSize < 1) or (StartHandSize > 20) do

 begin

 write('Enter start hand size: ');

 readln(StartHandSize);

 end;

…

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (b)(i), including prompts on screen capture
matching those in code.
Code for part (b)(i) must be sensible.

Screen capture(s) showing that after the values 0 and 21 are entered the
user is asked to enter the start hand size again and then the menu is
displayed;

++++++++++++++++++++++++++++++++++++++

+ Welcome to the WORDS WITH AQA game +

++++++++++++++++++++++++++++++++++++++

Enter start hand size: 0

Enter start hand size: 21

Enter start hand size: 5

=========

MAIN MENU

=========

1. Play game with random start hand

2. Play game with training start hand

Page 7 of 26

9. Quit

Enter your choice: 1

Player One it is your turn.

1

(c) (i) All marks for AO3 (programming)

1. Create variables to store the current start, mid and end points; A. no
variable for midpoint if midpoint is calculated each time it is needed in
the code

2. Setting correct initial values for start and end variables;
3. Iterative structure with one correct condition (either word is valid or

start is greater than end); R. if code is a linear search
4. Iterative structure with 2nd correct condition and correct logic;
5. Inside iterative structure, correctly calculate midpoint between start

and end;

A. mid-point being either the position before or the position after
the exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. Inside iterative structure there is a selection structure that
compares word at midpoint position in list with word being
searched for;

7. Values of start and end changed correctly under correct
circumstances;

8. True is returned if match with midpoint word found and True is not
returned under any other circumstances;

I. missing statement to display current word

Max 7 if code contains errors

Alternative answer using recursion

1. Create variable to store the current midpoint, start and end points
passed as parameters to subroutine; A. no variable for midpoint if
midpoint is calculated each time it is needed in the code A. midpoint as
parameter instead of as local variable

2. Initial subroutine call has values of 0 for startpoint parameter and
number of words in AllowedWords for endpoint parameter;

3. Selection structure which contains recursive call if word being
searched for is after word at midpoint;

4. Selection structure which contains recursive call if word being
searched for is before word at midpoint;

5. Correctly calculate midpoint between start and end;
A. midpoint being either the position before or the position after the
exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. There is a selection structure that compares word at midpoint
position in list with word being searched for and there is no
recursive call if they are equal with a value of True being returned;

7. In recursive calls the parameters for start and end points have

correct values;

Page 8 of 26

8. There is a selection structure that results in no recursive call and
False being returned if it is now known that the word being
searched for is not in the list;

Note for examiners: mark points 1, 2, 7 could be replaced by recursive
calls that appropriately half the number of items in the list of words
passed as a parameter – this would mean no need for start and end
points. In this case award one mark for each of the two recursive calls if
they contain the correctly reduced lists and one mark for the correct use
of the length function to find the number of items in the list. These marks

should not be awarded if the list is passed by reference resulting in the
original list of words being modified.

I. missing statement to display current word

Max 7 if code contains errors

Note for examiners: refer unusual solutions to team leader
8

Python 2
def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print AllowedWords[Mid]

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

Python 3
def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print(AllowedWords[Mid])

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

Visual Basic
Function CheckWordIsValid(ByVal Word As String, ByRef

AllowedWords As List(Of String)) As Boolean

 Dim ValidWord As Boolean = False

 Dim LStart As Integer = 0

 Dim LMid As Integer

 Dim LEnd As Integer = Len(AllowedWords) - 1

 While Not ValidWord And LStart <= LEnd

 LMid = (LStart + LEnd) \ 2

Page 9 of 26

 Console.WriteLine(AllowedWords(LMid))

 If AllowedWords(LMid) = Word Then

 ValidWord = True

 ElseIf Word > AllowedWords(LMid) Then

 LStart = LMid + 1

 Else

 LEnd = LMid - 1

 End If

 End While

 Return ValidWord

End Function

C#
private static bool CheckWordIsValid(string Word,

List<string> AllowedWords)

{

 bool ValidWord = false;

 int Start = 0;

 int End = AllowedWords.Count - 1;

 int Mid = 0;

 while (!ValidWord && Start <= End)

 {

 Mid = (Start + End) / 2;

 Console.WriteLine(AllowedWords[Mid]);

 if (AllowedWords[Mid] == Word)

 {

 ValidWord = true;

 }

 else if (string.Compare(Word, AllowedWords[Mid]) > 0)

 {

 Start = Mid + 1;

 }

 else

 {

 End = Mid -1;

 }

 }

 return ValidWord;

}

Java
boolean checkWordIsValid(String word, String[] allowedWords)

{

 boolean validWord = false;

 int start = 0;

 int end = allowedWords.length - 1;

 int mid = 0;

 while (!validWord && start <= end)

 {

 mid = (start + end) / 2;

 Console.println(allowedWords[mid]);

 if (allowedWords[mid].equals(word))

 {

 validWord = true;

 }

 else if (word.compareTo(allowedWords[mid]) > 0)

 {

 start = mid + 1;

 }

 else

 {

 end = mid -1;

 }

Page 10 of 26

 }

 return validWord;

}

Pascal / Delphi
function CheckWordIsValid(Word : string; AllowedWords : array

of string) : boolean;

 var

 ValidWord : boolean;

 Start, Mid, EndValue : integer;

 begin

 ValidWord := False;

 Start := 0;

 EndValue := length(AllowedWords) - 1;

 while (not(ValidWord)) and (Start <= EndValue) do

 begin

 Mid := (Start + EndValue) div 2;

 writeln(AllowedWords[Mid]);

 if AllowedWords[Mid] = Word then

 ValidWord := True

 else if Word > AllowedWords[Mid] then

 Start := Mid + 1

 else

 EndValue := Mid - 1;

 end;

 CheckWordIsValid := ValidWord;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (c)(i), including prompts on screen capture
matching those in code.
Code for part (c)(i) must be sensible.

R. if comparison words not shown in screen capture r

Screen capture(s) showing that the word “jars” was entered and the
words “MALEFICIAL”, “DONGLES”, “HAEMAGOGUE”,

“INTERMINGLE”, “LAGGER”, “JOULED”, “ISOCLINAL”, “JAUKING”,
“JACARANDA”, “JAMBEUX”, “JAPONICA”, “JAROVIZE”, “JASPER”,
“JARTA”, “JARRAH”, “JARRINGLY”, “JARS” are displayed in that order;

A. “MALEFICIAL”, “DONGOLA”, “HAEMAGOGUES”,
“INTERMINGLED”, “LAGGERS”, “JOULING”, “ISOCLINE”, “JAUNCE”,
“JACARE”, “JAMBING”, “JAPPING”, “JAROVIZING”, “JASPERISES”,
“JARVEY”, “JARRINGLY”, “JARTA”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

ALTERNATIVE ANSWERS (for different versions of text file)

Screen capture(s) showing that the word “jars” was entered and the
words “MALEATE”, “DONDER”, “HADST”, “INTERMENDIS”, “LAGAN”,
“JOTTERS”, “ISOCHROMATIC”, “JASPERS”, “JABBING”, “JALOUSIE”,

“JAPANISES”, “JARGOONS”, “JARRED”, “JASIES”, “JARUL”, “JARS”
are displayed in that order;

A. “MALEATE”, “DONDERED”, “HAE”, “INTERMEDIUM”, “LAGANS”,
“JOTTING”, “ISOCHROMOSONES”, “JASPERWARES”, “JABBLED”,
“JALOUSING”, “JAPANIZED”, “JARINA”, “JARRINGS”, “JASMINES”,

Page 11 of 26

“JARVEYS”, “JARTAS”, “JARSFUL”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

Screen capture(s) showing that the word “jars” was entered and the
words “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATION”,
“JOURNALS”, “JAMAICA”, “JEWELLERY”, “JEAN”, “JAR”, “JAY”,
“JASON”, “JARS” are displayed in that order;

A. “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATIONS”, “JOURNEY”,
“JAMIE”, “JEWISH”, “JEEP”, “JAVA”, “JAPAN”, “JARS” being displayed
if alternative answer for mark point 5 in part (c)(i) used

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>jars

MALEFICIAL

DONGLES

HAEMAGOGUE

INTERMINGLE

LAGGER

JOULED

ISOCLINAL

JAUKING

JACARANDA

JAMBEUX

JAPONICA

JAROVIZE

JASPER

JARTA

JARRAH

JARRINGLY

JARS

Valid word

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR

 replace the tiles you used and get three extra tiles (3) OR

 get no new tiles (4)?

>

1

(d) (i) All marks for AO3 (programming)

1. Creating new subroutine called CalculateFrequencies with

appropriate interface; R. if spelt incorrectly I. case
2. Iterative structure that repeats 26 times (once for each letter in the

alphabet);
3. Iterative structure that looks at each word in AllowedWords;

4. Iterative structure that looks at each letter in a word and suitable
nesting for iterative structures;

5. Selection structure, inside iterative structure, that compares two

letters;
A. use of built-in functions that result in same functionality as mark
points 4 and 5;;

Page 12 of 26

6. Inside iterative structure increases variable used to count
instances of a letter;

7. Displays a numeric count (even if incorrect) and the letter for each
letter in the alphabet; A. is done in sensible place in
DisplayTileValues

8. Syntactically correct call to new subroutine from
DisplayTileValues; A. any suitable place for subroutine call

Alternative answer
If answer looks at each letter in AllowedWords in turn and maintains a

count (eg in array/list) for the number of each letter found then mark
points 2 and 5 should be:
2. Creation of suitable data structure to store 26 counts.

5. Appropriate method to select count that corresponds to current
letter.

Max 7 if code contains errors
8

Python 2
def CalculateFrequencies(AllowedWords):

 print "Letter frequencies in the allowed words are:"

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 b>LetterCount += 1

 sys.stdout.write(LetterToFind + " " + LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 sys.stdout.write("Points for " + Letter + ": " +

str(Points) + "\n")

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer
def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 sys.stdout.write(Letter + " " + str(Count))

Alternative answer
def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 sys.stdout.write(chr(a + 65) + " " + str(Counts[a]))

Page 13 of 26

Python 3
def CalculateFrequencies(AllowedWords):

 print("Letter frequencies in the allowed words are:")

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 LetterCount += 1

 print(LetterToFind, " ", LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 print("Points for " + Letter + ": " + str(Points))

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer
def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 print(Letter,Count)

Alternative answer
def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 print(chr(a + 65), Counts[a])

Visual Basic
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim LetterCount As Integer

 Dim LetterToFind As Char

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Code = 0 To 25

 LetterCount = 0

 LetterToFind = Chr(Code + 65)

 For Each Word In AllowedWords

 For Each Letter In Word

 If Letter = LetterToFind Then

 LetterCount += 1

 End If

 Next

 Next

 Console.WriteLine(LetterToFind & " " & LetterCount)

 Next

End Sub

Sub DisplayTileValues(ByVal TileDictionary As Dictionary(Of

Page 14 of 26

Char, Integer), ByRef AllowedWords As List(Of String))

 Console.WriteLine()

 Console.WriteLine("TILE VALUES")

 Console.WriteLine()

 For Each Tile As KeyValuePair(Of Char, Integer) In

 TileDictionary

 Console.WriteLine("Points for " & Tile.Key & ": " &

Tile.Value)

 Next

 Console.WriteLine()

 CalculateFrequencies(AllowedWords)

End Sub

Alternative answer
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim NumberOfTimes, Count As Integer

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Each Letter In "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 Count = 0

 For Each Word In AllowedWords

 NumberOfTimes = Word.Split(Letter).Length - 1

 Count += NumberOfTimes

 Next

 Console.WriteLine(Letter & " " & Count)

 Next

End Sub

Alternative answer
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim Counts(25) As Integer

 For Count = 0 To 25

 Counts(Count) = 0

 Next

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Each Word In AllowedWords

 For Each Letter In Word

 Counts(Asc(Letter) - 65) += 1

 Next

 Next

 For count = 0 To 25

 Console.WriteLine(Chr(count + 65) & " " & Counts(count))

 Next

End Sub

C#
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed words

are:");

 int LetterCount = 0;

 char LetterToFind;

 for (int Code = 0; Code < 26; Code++)

 {

 LetterCount = 0;

 LetterToFind = (char)(Code + 65);

 foreach (var Word in AllowedWords)

 {

 foreach (var Letter in Word)

Page 15 of 26

 {

 if (Letter == LetterToFind)

 {

 LetterCount++;

 }

 }

 }

 Console.WriteLine(LetterToFind + " " + LetterCount);

 }

}

private static void DisplayTileValues(Dictionary<char, int>

TileDictionary, List<string> AllowedWords)

{

 Console.WriteLine();

 Console.WriteLine("TILE VALUES");

 Console.WriteLine();

 char Letter;

 int Points;

 foreach (var Pair in TileDictionary)

 {

 Letter = Pair.Key;

 Points = Pair.Value;

 Console.WriteLine("Points for " + Letter + ": " + Points);

 }

 CalculateFrequencies(AllowedWords);

 Console.WriteLine();

}

Alternative answer
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed words

are:");

 int LetterCount = 0;

 string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 foreach (var Letter in Alphabet)

 {

 LetterCount = 0;

 foreach (var Words in AllowedWords)

 {

 LetterCount = LetterCount + (Words.Split(Letter).Length

- 1);

 }

 Console.WriteLine(Letter + " " + LetterCount);

 }

}

Alternative answer
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 List<int> Counts = new List<int>() ;

 for (int i = 0; i < 26; i++)

 {

 Counts.Add(0);

 }

 foreach (var Words in AllowedWords)

 {

 foreach (var Letter in Words)

 {

 Counts[(int)Letter - 65]++;

Page 16 of 26

 }

 }

 for (int a = 0; a < 26; a++)

 {

 char Alpha =Convert.ToChar(a + 65);

 Console.WriteLine(Alpha + " " + Counts[a]);

 }

}

Java
void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 char letterToFind;

 for (int count = 0; count < 26; count++)

 {

 letterCount = 0;

 letterToFind = (char)(65 + count);

 for(String word:allowedWords)

 {

 for(char letter : word.toCharArray())

 {

 if(letterToFind == letter)

 {

 letterCount++;

 }

 }

 }

 Console.println(letterToFind + ", Frequency: " +

letterCount);

 }

}

void displayTileValues(Map tileDictionary, String[]

allowedWords)

{

 Console.println();

 Console.println("TILE VALUES");

 Console.println();

 for (Object letter : tileDictionary.keySet())

 {

 int points = (int)tileDictionary.get(letter);

 Console.println("Points for " + letter + ": " + points);

 }

 calculateFrequencies(allowedWords);

 Console.println();

}

Alternative answer
void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 for(char letter: alphabet.toCharArray())

 {

 letterCount = 0;

 for(String word: allowedWords)

 {

 letterCount += word.split(letter + "").length - 1;

 }

 Console.println(letter + ", Frequency: " + letterCount);

 }

}

Page 17 of 26

Alternative answer
void calculateFrequencies(String[] allowedWords)

{

 int[] counts = new int[26];

 for(String word: allowedWords)

 {

 for(char letter: word.toCharArray())

 {

 int letterPostion = (int)letter - 65;

 counts[letterPostion]++;

 }

 }

 for (int count = 0; count < 26; count++)

 {

 char letter = (char)(65 + count);

 Console.println(letter + ", Frequency: " + counts[count]);

 }

}

Pascal / Delphi
procedure CalculateFrequencies(AllowedWords : array of

string);

 var

 Code, LetterCount : integer;

 LetterToFind, Letter : char;

 Word : string;

 begin

 writeln('Letter frequencies in the allowed words are:');

 for Code := 0 to 25 do

 begin

 LetterCount := 0;

 LetterToFind := chr(65 + Code);

 for Word in AllowedWords do

 begin

 for Letter in Word do

 begin

 if Letter = LetterToFind then

 LetterCount := LetterCount + 1;

 end;

 end;

 writeln(LetterToFind, ' ', LetterCount);

 end;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (d)(i), including prompts on screen capture
matching those in code.

Code for part (d)(i) must be sensible.

Screen capture(s) showing correct list of letter frequencies are
displayed;

I. Ignore order of letter frequency pairs
I. any additional output eg headings like “Letter” and “Count”
Letter frequencies in the allowed words are:

A 188704

B 44953

C 98231

D 81731

E 275582

Page 18 of 26

F 28931

G 67910

H 60702

I 220483

J 4010

K 22076

L 127865

M 70700

N 163637

O 161752

P 73286

Q 4104

R 170522

S 234673

T 159471

U 80636

V 22521

W 18393

X 6852

Y 39772

Z 11772

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

ALTERNATIVE ANSWERS (for different versions of text file)

Letter frequencies in the allowed words are:

A 188627

B 44923

C 98187

D 81686

E 275478

F 28899

G 67795

H 60627

I 220331

J 4007

K 22028

L 127814

M 70679

N 163547

O 161720

P 73267

Q 4104

R 170461

S 234473

T 159351

U 80579

V 22509

W 18377

X 6852

Y 39760

Z 11765

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

Page 19 of 26

Letter frequencies in the allowed words are:

A 5299

B 1105

C 2980

D 2482

E 7523

F 909

G 1692

H 1399

I 5391

J 178

K 569

L 3180

M 1871

N 4762

O 4177

P 1992

Q 122

R 4812

S 4999

T 4695

U 1898

V 835

W 607

X 246

Y 999

Z 128

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

1

(e) (i) All marks for AO3 (programming)

Modifying subroutine UpdateAfterAllowedWord:

1. Correct subroutine call to GetScoreForWordAndPrefix added in

UpdateAfterAllowedWord;

2. Result returned by GetScoreForWordAndPrefix added to
PlayerScore;

A. alternative names for subroutine GetScoreForWordAndPrefix if

match name of subroutine created

Creating new subroutine:
3. Subroutine GetScoreForWordAndPrefix created; R. if spelt

incorrectly I. case
4. All data needed (Word, TileDictionary, AllowedWords) is

passed into subroutine via interface;
5. Integer value always returned by subroutine;

Base case in subroutine:

6. Selection structure for differentiating base case and recursive case
with suitable condition (word length of 0 // 1 // 2); R. if base case

will result in recursion

Page 20 of 26

7. If base case word length is 0 then value of 0 is returned by
subroutine and there is no recursive call // if base case word length
is 1 then value of 0 is returned by subroutine and there is no
recursive call // if base case word length is 2 the subroutine returns
0 if the two-letter word is not a valid word and returns the score for
the two-letter word if it is a valid word;

Recursive case in subroutine:

8. Selection structure that contains code that adds value returned by
call to GetScoreForWord to score if word is valid; A. no call to

subroutine GetScoreForWord if correct code to calculate score

included in sensible place in GetScoreForWordAndPrefix

subroutine R. if no check for word being valid
9. Call to GetScoreForWordAndPrefix;

10. Result from recursive call added to score;
11. Recursion will eventually reach base case as recursive call has a

parameter that is word with last letter removed;

How to mark question if no attempt to use recursion:

Mark points 1-5 same as for recursive attempt. No marks awarded for
mark points 6-11, instead award marks as appropriate for mark points
12-14.
12. Adds the score for the original word to the score once // sets the

initial score to be the score for the original word; A. no call to
subroutine GetScoreForWord if correct code to calculate score

included in sensible place in GetScoreForWordAndPrefix

subroutine. Note for examiners: there is no need for the answer
to check if the original word is valid

13. Iterative structure that will repeat n − 1 times where n is the length

of the word; A. n − 2 A. n

14. Inside iterative structure adds score for current prefix word, if it is a
valid word, to score once; A. no call to GetScoreForWord if own

code to calculate score is correct

Max 10 if code contains errors

Max 8 if recursion not used in an appropriate way
11

Python 2
def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

Page 21 of 26

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) - 1],

TileDictionary, AllowedWords)

 return Score

Alternative answer

def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

Python 3
def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) - 1],

TileDictionary, AllowedWords)

 return Score

Alternative answer
def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

Visual Basic
Sub UpdateAfterAllowedWord(ByVal Word As String, ByRef

PlayerTiles As String, ByRef PlayerScore As Integer, ByRef

PlayerTilesPlayed As Integer, ByVal TileDictionary As

Dictionary(Of Char, Integer), ByRef AllowedWords As List(Of

String))

 PlayerTilesPlayed += Len(Word)

 For Each Letter In Word

 PlayerTiles = Replace(PlayerTiles, Letter, "", , 1)

 Next

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

End Sub

Page 22 of 26

Function GetScoreForWordAndPrefix(ByVal Word As String, ByVal

TileDictionary As Dictionary(Of Char, Integer), ByRef

AllowedWords As List(Of String)) As Integer

 Dim Score As Integer

 If Len(Word) <= 1 Then

 Return 0

 Else

 Score = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 Score += GetScoreForWordAndPrefix(Mid(Word, 1, Len(Word)

- 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

Alternative answer
Function GetScoreForWordAndPrefix(ByVal Word As String, ByVal

TileDictionary As Dictionary(Of Char, Integer), ByRef

AllowedWords As List(Of String)) As Integer

 Dim Score As Integer = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 If Len(Word) - 1 > 0 Then

 Score += GetScoreForWordAndPrefix(Mid(Word, 1, Len(Word)

- 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

C#
private static void UpdateAfterAllowedWord(string Word, ref

string PlayerTiles, ref int PlayerScore, ref int

PlayerTilesPlayed, Dictionary<char, int> TileDictionary,

List<string> AllowedWords)

{

 PlayerTilesPlayed = PlayerTilesPlayed + Word.Length;

 foreach (var Letter in Word)

 {

 PlayerTiles =

PlayerTiles.Remove(PlayerTiles.IndexOf(Letter), 1);

 }

 PlayerScore = PlayerScore + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

}

private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (Word.Length <= 1)

 {

 return 0;

 }

 else

 {

 Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

Page 23 of 26

 }

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 return Score;

 }

}

Alternative answer
private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

 }

 if (Word.Remove(Word.Length - 1).Length > 0)

 {

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 }

 return Score;

}

Java
int getScoreForWordAndPrefix(String word, Map tileDictionary,

String[] allowedWords)

{

 int score = 0;

 if(word.length() < 2)

 {

 return 0;

 }

 else

 {

 if(checkWordIsValid(word, allowedWords))

 {

 score = getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 return score + getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

 }

}

void updateAfterAllowedWord(String word, Tiles

playerTiles,

 Score playerScore, TileCount playerTilesPlayed, Map

tileDictionary,

 String[] allowedWords)

{

 playerTilesPlayed.numberOfTiles += word.length();

 for(char letter : word.toCharArray())

 {

 playerTiles.playerTiles =

playerTiles.playerTiles.replaceFirst(letter+"", "");

 }

 playerScore.score += getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

}

Page 24 of 26

Alternative answer
int getScoreForWordAndPrefix(String word, Map tileDictionary,

String[] allowedWords)

{

 int score = 0;

 if(checkWordIsValid(word, allowedWords))

 {

 score += getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 if(word.length()>1)

 {

 score += getScoreForWordAndPrefix(word, tileDictionary,

allowedWords);

 }

 return score;

}

Pascal / Delphi
function GetScoreForWordAndPrefix(Word : string;

TileDictionary : TileDictionary; AllowedWords : array of

string) : integer;

 var

 Score : integer;

 begin

 if length(word) <= 1 then

 Score := 0

 else

 begin

 Score := 0;

 if CheckWordIsValid(Word, AllowedWords) then

 Score := Score + GetScoreForWord(Word,

TileDictionary);

 Delete(Word,length(Word),1);

 Score := Score + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

 end;

 GetScoreForWordAndPrefix := Score;

 end;

procedure UpdateAfterAllowedWord(Word : string; var

PlayerTiles : string; var PlayerScore : integer; var

PlayerTilesPlayed : integer; TileDictionary : TileDictionary;

var AllowedWords : array of string);

 var

 Letter : Char;

 begin

 PlayerTilesPlayed := PlayerTilesPlayed + length(Word);

 for Letter in Word do

 Delete(PlayerTiles,pos(letter, PlayerTiles),1);

 PlayerScore := PlayerScore +

GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords);

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (e)(i), including prompts on screen capture
matching those in code.
Code for part (e)(i) must be sensible.

Screen capture(s) showing that the word abandon was entered and the

Page 25 of 26

new score of 78 is displayed;

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR replace the tiles you used

and get three extra tiles (3) OR

 get no new tiles (4)?

>4

Your word was: ABANDON

Your new score is: 78

You have played 7 tiles so far in this game.

Press Enter to continue

1

[37]

Page 26 of 26

Examiner reports

Q1.
(a) This was the first of the questions that required modifying the Skeleton Program. It

was a simple question that over 80% of students were able to answer correctly.
When mistakes were made this was normally because tiles other than just J and X
were also changed to be worth 4 points.

(b) Like question (a), this question was normally well-answered with almost all student
getting some marks and about 75% obtaining full marks. Where students didn’t get
full marks this was normally due to the conditions on the loop being incorrect which
prevented the values of 1 and / or 20 from being valid.

(c) For this question students had to replace the linear search algorithm used to check if
a word is in the list of allowed words with a binary search algorithm. An example of
how a binary search algorithm works was included on the question paper but if a
similar question is asked in the future that may not be done. A mixture of iterative
and recursive solutions were seen. The most common error made by students who

didn’t get full marks but made a good attempt at answering the question was to miss
out the condition that terminates the loop if it is now known that the word is not in
the list.

(d) Students found question (d) easier than questions (c) and (e). Better answers made
good use of iteration and arrays / lists, less efficient answers which used 26
variables to store the different letter counts could also get full marks. Some students
added code in their new subroutine to read the contents of the text file rather than
pass the list as a parameter to the subroutine; this was not necessary but was not
penalised.

(e) Question (e) asked students to create a recursive subroutine. If students answered
the question without using recursion they could still get 9 out of the 12 marks
available.

It was disappointing that many students did not include any evidence of their attempt
to answer the question. Good exam technique would be to include some program
code that answers some part or parts of the question. For instance, in question (e)
students could get marks for creating a subroutine with the specified name and
calling that subroutine – even if the subroutine didn’t do anything. There are many
examples of subroutines and subroutine calls in the Skeleton Program that students
could have used to help them obtain some marks on this question.

A number of very well-written subroutines were seen that made appropriate use of
recursion and string handling. Some good recursive answers did not get full marks
because they did not include a check that the word / prefix passed as a parameter
was valid before the tile points included in the word were used to modify the score,
this meant that all prefixes would be included in the score and not just the valid

prefixes. Another frequent mistake came when students wrote their own code to
calculate the score for a prefix rather than use the existing subroutine included in the
Skeleton Program that calculated the score for a word – if done correctly full marks
could be obtained by doing this but a number of students made mistakes when
writing their own score-calculating code.

