

2.5 Transformations of Graphs

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

HORIZONTAL STRETCH OC CHANGES
$$\times \frac{1}{3}$$

$$\left(-\frac{1}{3},4\right)$$

REFLECTION DC AXIS

i) VERTICAL TRANSLATION Y CHANGED

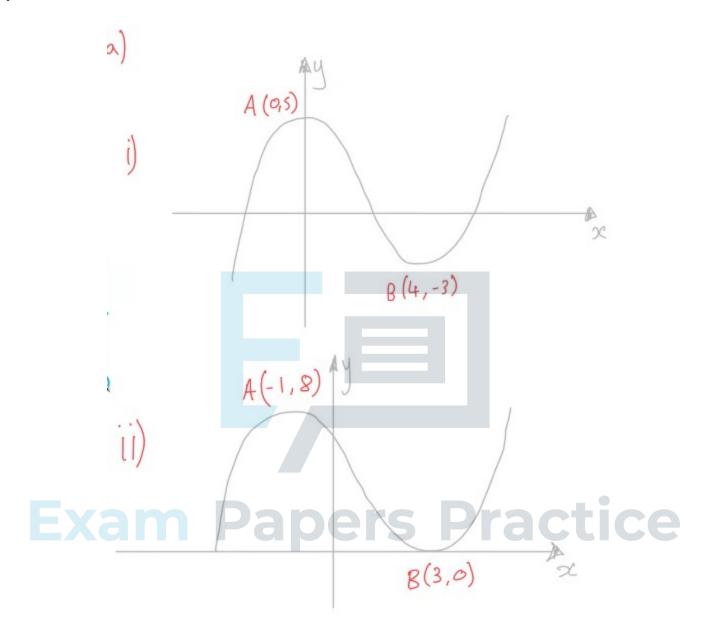
(3,2)
$$\Rightarrow$$
 (3,-5) $a=-7$

ii) HORIZONTAL TRANSLATION OF CHANGED

(3,2) \Rightarrow (-1,2) $b=4$

iii) VERTICAL STRETCH Y CHANGED

(3,2) \Rightarrow (3,1) $c=\frac{1}{2}$


iv) HORIZONTAL STRETCH OC CHANGED

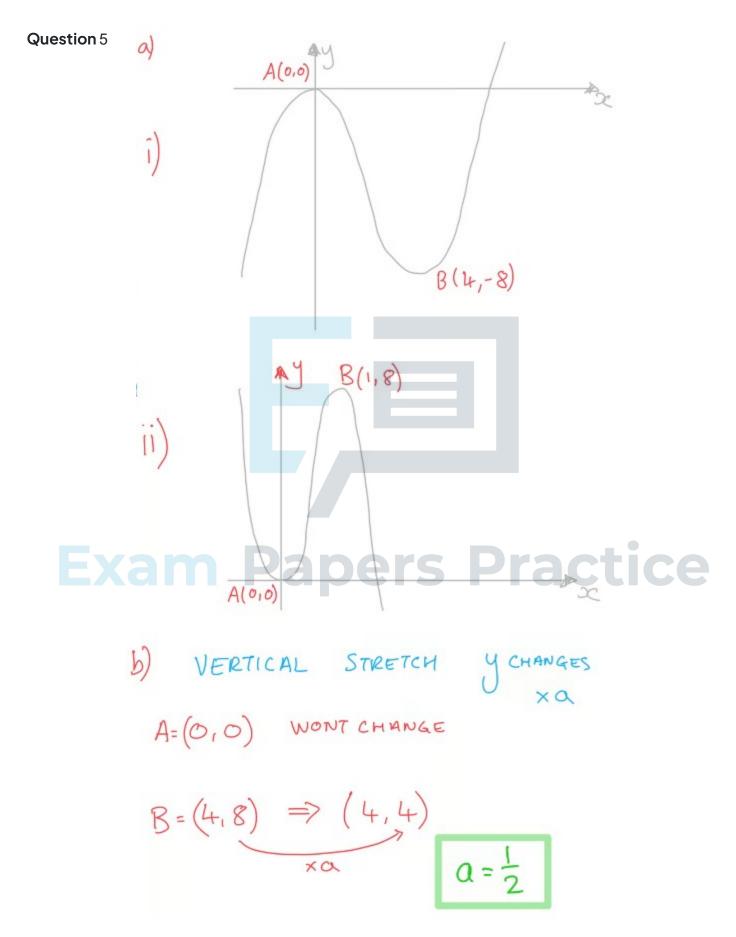
(1) HORIZONTAL STRETCH OC CHANGED

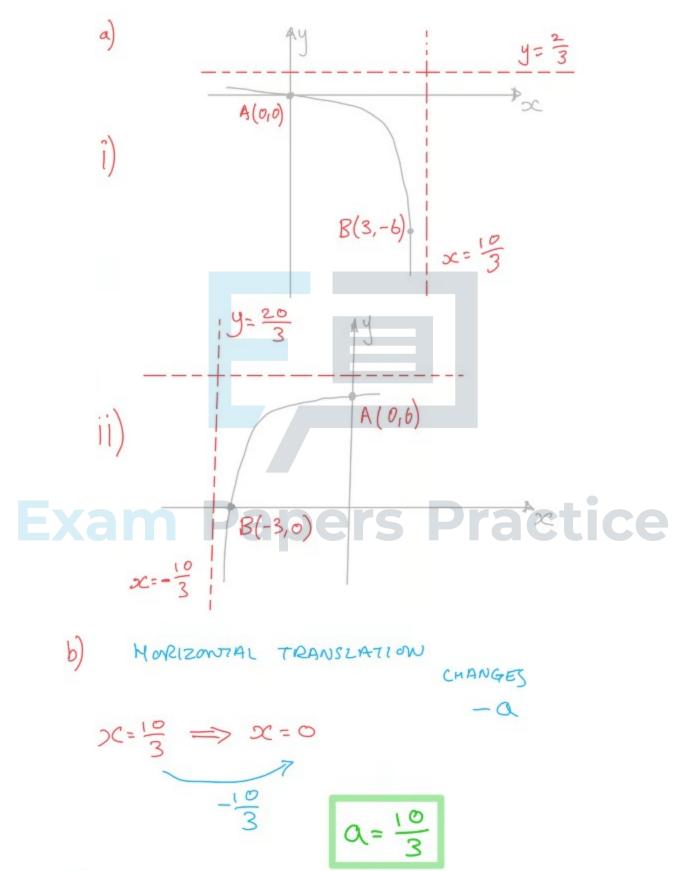
× $\frac{1}{4}$

EXAM (3,2) \Rightarrow (1,2) \Rightarrow (3,1) \Rightarrow (1,2) \Rightarrow (3,2) \Rightarrow (1,2) \Rightarrow (3,3) \Rightarrow (1,2) \Rightarrow (3,3) \Rightarrow (1,2) \Rightarrow (3,3) \Rightarrow (1,2) \Rightarrow (3,4) \Rightarrow (1,2) \Rightarrow (3,5) \Rightarrow (1,2) \Rightarrow (3,6) \Rightarrow (1,2) \Rightarrow (3,7) \Rightarrow (1,2) \Rightarrow (1,2) \Rightarrow (1,3) \Rightarrow (1,4) \Rightarrow (1,5) \Rightarrow (1,5) \Rightarrow (1,6) \Rightarrow (1,6) \Rightarrow (1,7) \Rightarrow (1,7) \Rightarrow (1,8) \Rightarrow (1,9) \Rightarrow (1

b) HORIZONTAL TRANCATION
$$x \in A$$
 and $a = -3$

$$A = (-1,5) \Rightarrow (2,5)$$


$$A = -3$$


$$A = (3,-3) \Rightarrow (2,-3)$$

$$A = 1$$

$$A = -3$$

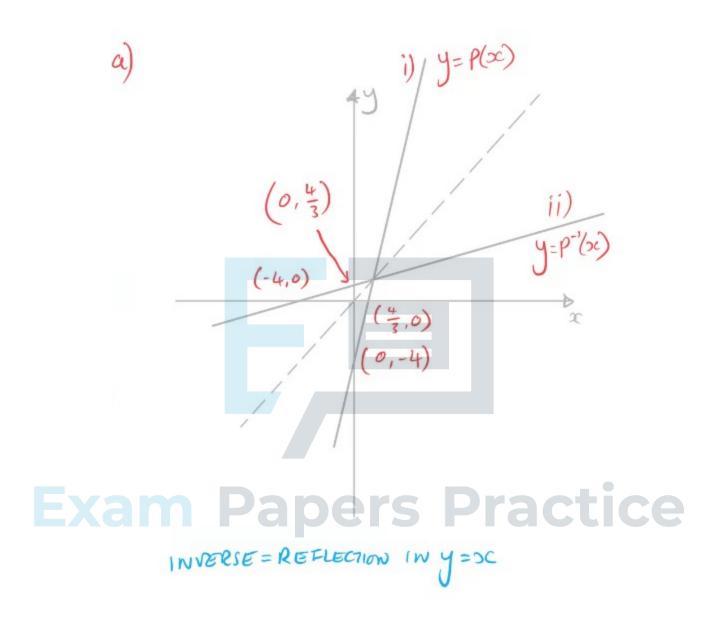
$$A = 1$$

DEALWITH INSIDE BRACKETS FIRST

INSIDE = MORIZONTAL

OUTSIDE = VERTICAL

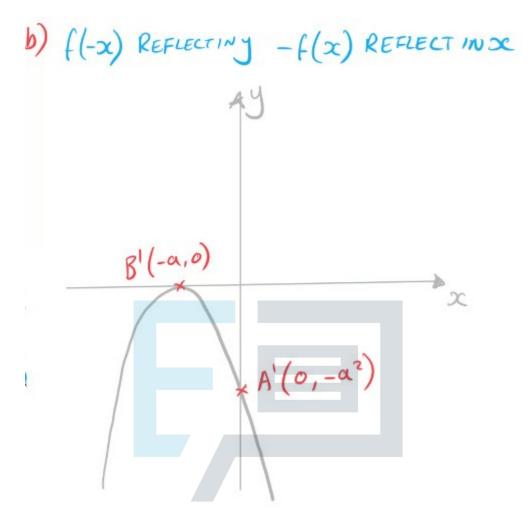
TRANSLATION BY (-2)
VERTICAL STRETCH SF. 3


REFLECTION IN Y AXIS (OR 20)

TRANSLATION BY (-1)

1.
$$f(x) \Rightarrow f(x-2)$$

 $3x^2-2x \Rightarrow 3(x-2)^2-2(x-2)$
 $3(x^2-4x+4)-2x+4$
 $3x^2-14x+16$
2. $f(x-2) \Rightarrow 4f(x-2)$
 $4(3x^2-14x+16)$
 $12x^2-56x+64$
3. $4f(x-2) \Rightarrow 4f(x-2)-3$
 $12x^2-56x+64-3$
Papers Practice
 $g(x)=12x^2-56x+61$


b) i) LET
$$y=3x-4$$
 REARRANGE
 $y+4=3x$
 $y+4=5x$
 $y+4=5x$
 $y=3x-4$
P'(x) = $\frac{1}{3}(x+4)$
ii) $\frac{1}{4}(3x-4)+16$
 $\frac{1}{3}(3x+4)$
 $\frac{1}{3}(x+4)$
 $\frac{1}{3}(x+4)$
 $\frac{1}{3}(x+4)$
EX (11) $\frac{1}{4}(p(x)+16) = p'(x)$

BOTH POINTS ON AXES SO

$$y = 0$$
 $A = 0$
 $A =$

EXE) BOTH ON AXES GO HORIZONTAL ANDLICE VERTICAL DISTANCES FROM ORIGIN

$$A = 3B$$

 $(o, a^2) = (a, o)$
 $a^2 = 3a$
 $a = 3$

1. HORIZOWTAL = INSIDE BRACKETS
$$(SCALE FACTOR = \frac{1}{\alpha})$$

$$STRETCH = MULTIPLY$$

$$f\left(\frac{1}{2}\infty\right)$$
2. VERTICAL REFLECTION = OUTSIDE
$$-f\left(\frac{1}{2}\infty\right)$$
3. VERTICAL TRANSLATION = OUTSIDE
$$-f\left(\frac{1}{2}\infty\right) + 2$$
Exam Pa2- $f\left(\frac{1}{2}\infty\right)$ Practice

WERTICAL STRETCH SFS ONLY AFFECTS
$$y$$

i) MIN SIN2t=-1

MIN $5(SIN2t+30)=-5$
 $y=-5$
 $t=135-30$
 $t=105^{\circ}$

Papers Practice

 $f(\frac{1}{2}t)=SINt$
 $f(\frac{1}{2}t)+2=2+SINt$

a) SUBIN
$$\infty = -3$$

$$3(-3)^{2} + 18(-3) + 27$$

$$27 - 54 + 27 = 0$$

$$f(-3) = 0$$

b) FACTORISE 3 FROM
$$\infty$$
 TERMS
$$f(x) = 3(\infty^2 + 6x) + 27$$

$$COMPLETE THE SOUARE ON $\infty^2 + 6\infty$

$$f(x) = 3[(\infty + 3)^2 - 3^2] + 27$$

$$f(x) = 3[(\infty + 3)^2 - 9] + 27$$

$$EXPAND AND SIMPLIFY INTO FORM $\alpha(\infty - h)^2 + K$$$$$

Exam Payoscars Practice

ALTERNATE METHOD EXPAND
$$a(\infty-h)^2+k$$

$$a(\infty-h)^2+k = a\infty^2-2ah\infty+ah^2+k$$

$$compare Coefficients To $3\infty^2+18\infty+27$

$$a0c^2=3\infty^2 \Rightarrow a=3$$

$$-2ah\infty=18\infty \Rightarrow -2(3)h=18 \Rightarrow h=-3$$

$$ah^2+k=27 \Rightarrow 3(-3)^2+k=27 \Rightarrow k=0$$$$

C) REFLECTION OF
$$f(x)$$
 IN $x - Axis : -f(x)$

TRANSLATION BY $\begin{bmatrix} 0 \\ 1 \end{bmatrix} : -f(x) + 1$

$$g(x) = -f(x) + 1$$

$$g(x) = -3x^2 + 18x + 27 + 1$$

$$= -3x^2 - 18x - 27 + 1$$

$$g(x) = -3x^2 - 18x - 26$$