

2.5 Transformations of Graphs

Contents

- * 2.5.1 Translations of Graphs
- * 2.5.2 Reflections of Graphs
- * 2.5.3 Stretches of Graphs
- * 2.5.4 Composite Transformations of Graphs

2.5.1 Translations of Graphs

Translations of Graphs

What are translations of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a translation:
 - the graph is **moved** (up or down, left or right) in the xy plane
 - Its position changes
 - the shape, size, and orientation of the graph remain **unchanged**
- A particular translation (how far left/right, how far up/down) is specified by a **translation vector** $\begin{pmatrix} X \\ Y \end{pmatrix}$
 - x is the **horizontal** displacement
 - Positive moves right
 - Negative moves left
 - y is the **vertical** displacement
 - Positive moves up
 - Negative moves down

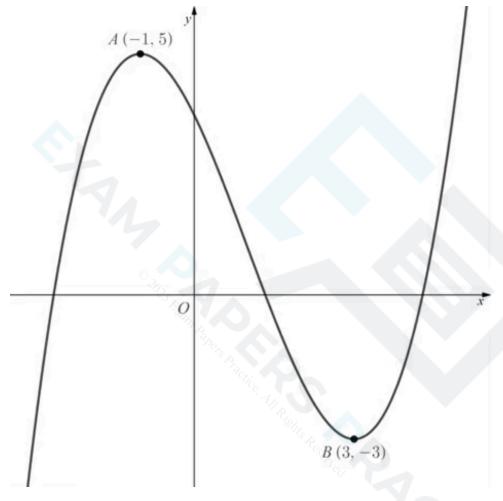
What effects do horizontal translations have on the graphs and functions?

- A horizontal translation of the graph y = f(x) by the vector $\begin{pmatrix} a \\ 0 \end{pmatrix}$ is represented by
 - y = f(x a)
- The x-coordinates change
 - The value a is **subtracted** from them
- The y-coordinates stay the same
- The coordinates (x, y) become (x + a, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = k + a

What effects do vertical translations have on the graphs and functions?

- A **vertical translation** of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ b \end{pmatrix}$ is represented by
 - y b = f(x)
 - This is often rearranged to y = f(x) + b
- The x-coordinates stay the same
- The y-coordinates change
 - The value b is **added** to them
- The coordinates (x, y) become (x, y + b)
- Horizontal asymptotes change
 - y = k becomes y = k + b
- Vertical asymptotes stay the same

The diagram below shows the graph of y = f(x).



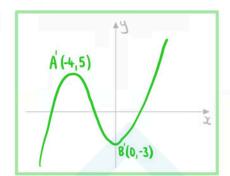
a) Sketch the graph of y = f(x+3).

y = f(x + k) translation by $\begin{pmatrix} -k \\ 0 \end{pmatrix}$

Translate y=f(x) by $\binom{-3}{0}$

A becomes (-4,5)

B becomes (0, -3)



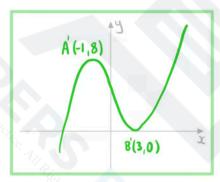
b) Sketch the graph of y = f(x) + 3.

y = f(x) + k translation by $\binom{0}{k}$

Translate y=f(x) by $\binom{0}{3}$

A becomes (-1,8)

B becomes (3,0)



2.5.2 Reflections of Graphs

Reflections of Graphs

What are reflections of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a reflection:
 - the graph is **flipped** about one of the coordinate axes
 - Its orientation changes
 - the size of the graph remains unchanged
- A particular reflection is specified by an **axis of symmetry**:
 - y=0
 - This is the *x*-axis
 - X = 0
 - This is the *y*-axis

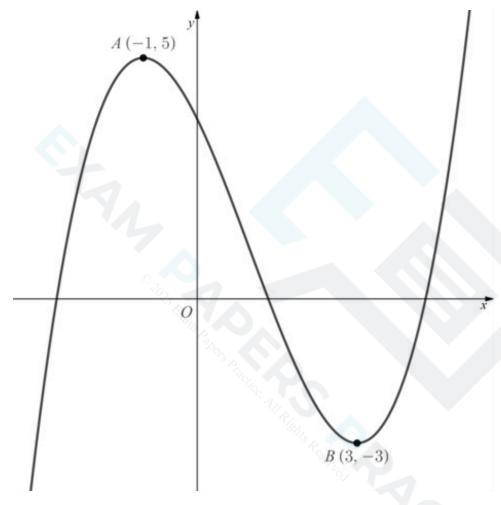
What effects do horizontal reflections have on the graphs and functions?

- A horizontal reflection of the graph y = f(x) about the y-axis is represented by
 - y = f(-x)
- The x-coordinates change
 - Their **sign** changes
- The y-coordinates stay the same
- The coordinates (x, y) become (-x, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change

What effects do vertical reflections have on the graphs and functions?

- A vertical reflection of the graph y = f(x) about the x-axis is represented by
 - -y = f(x)
 - This is often rearranged to y = -f(x)
- The x-coordinates stay the same
- The y-coordinates change
 - Their **sign** changes
- The coordinates (x, y) become (x, -y)
- Horizontal asymptotes change
 - y = k becomes y = -k
- Vertical asymptotes stay the same

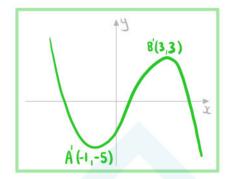
The diagram below shows the graph of y = f(x).



a) Sketch the graph of y = -f(x).

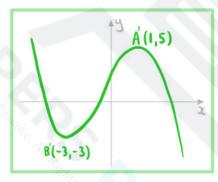
y = -f(x) reflection in x-axis

- A becomes (-1,-5)
- B becomes (3, 3)



- Sketch the graph of y = f(-x). b)
 - y = f(-x) reflection in y-axis

 - A becomes (1,5)
 B becomes (-3,-3)

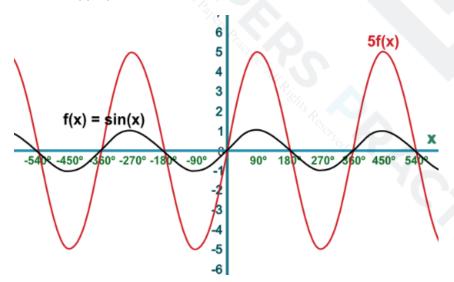


2.5.3 Stretches of Graphs

Stretches of Graphs

What are stretches of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a stretch:
 - the graph is **stretched** about one of the coordinate axes by a scale factor
 - Its size changes
 - the orientation of the graph remains unchanged
- A particular stretch is specified by a **coordinate axis** and a **scale factor**:
 - The distance between a point on the graph and the specified coordinate axis is multiplied by the constant scale factor
 - The graph is stretched in the direction which is parallel to the other coordinate axis
 - For scale factors bigger than 1
 - the points on the graph get further away from the specified coordinate axis
 - For scale factors **between 0 and 1**
 - the points on the graph get closer to the specified coordinate axis
 - This is also sometimes called a compression but in your exam you must use the term stretch with the appropriate scale factor



What effects do horizontal stretches have on the graphs and functions?

• A horizontal stretch of the graph y = f(x) by a scale factor q centred about the y-axis is represented by

$$y = f\left(\frac{x}{q}\right)$$

- The x-coordinates change
 - They are **divided** by q
- The y-coordinates stay the same
- The coordinates (x, y) become (qx, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = qk

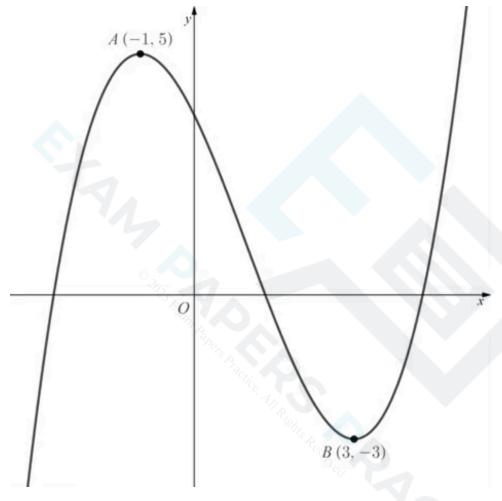
What effects do vertical stretches have on the graphs and functions?

• A vertical stretch of the graph y = f(x) by a scale factor p centred about the x-axis is represented by

$$\frac{y}{p} = f(x)$$

- This is often rearranged to y = pf(x)
- The x-coordinates stay the same
- The y-coordinates change
 - They are multiplied by p
- The coordinates (x, y) become (x, py)
- Horizontal asymptotes change
 - y = k becomes y = pk
- Vertical asymptotes stay the same

The diagram below shows the graph of y = f(x).



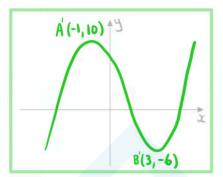
a) Sketch the graph of y = 2f(x).

y=kf(x) vertical stretch scale factor k

Stretch y=f(x) vertically scale factor 2

A becomes (-1,10)

B becomes (3,-6)



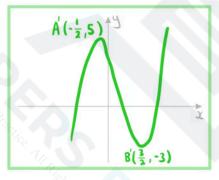
b) Sketch the graph of y = f(2x).

y = f(kx) horizontal stretch scale factor $\frac{1}{k}$

Stretch y=f(x) horizontally scale factor $\frac{1}{2}$

A becomes $\left(-\frac{1}{2},5\right)$

B becomes $(\frac{3}{\lambda}, -3)$



2.5.4 Composite Transformations of Graphs

Composite Transformations of Graphs

What transformations do I need to know?

$$y = f(x+k) \text{ is horizontal translation by vector} \begin{pmatrix} -k \\ 0 \end{pmatrix}$$

- If k is **positive** then the graph moves **left**
- If k is **negative** then the graph moves **right**

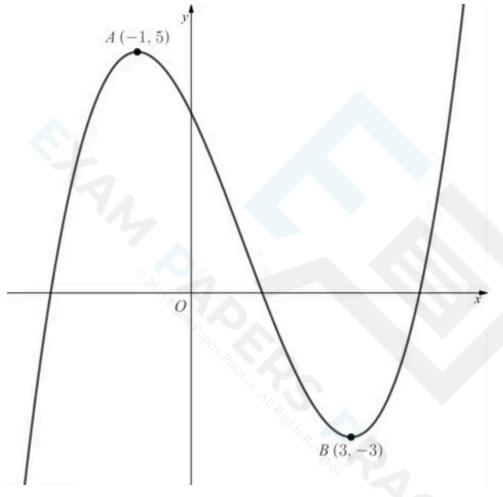
$$y = f(x) + k \text{ is } \mathbf{vertical translation by vector} \begin{pmatrix} 0 \\ k \end{pmatrix}$$

- If k is **positive** then the graph moves **up**
- If k is **negative** then the graph moves **down**
- y = f(kx) is a **horizontal stretch** by scale factor $\frac{1}{k}$ centred about the y-axis
 - If k > 1 then the graph gets closer to the y-axis
 - If **0 < k < 1** then the graph gets **further** from the y-axis
- y = kf(x) is a **vertical stretch** by scale factor k centred about the x-axis
 - If k > 1 then the graph gets further from the x-axis
 - If **0 < k < 1** then the graph gets **closer** to the x-axis
- y = f(-x) is a **horizontal reflection** about the y-axis
 - A horizontal reflection can be viewed as a special case of a horizontal stretch
- y = -f(x) is a **vertical reflection** about the x-axis
 - A vertical reflection can be viewed as a special case of a vertical stretch

How do horizontal and vertical transformations affect each other?

- Horizontal and vertical transformations are independent of each other
 - The horizontal transformations involved will need to be applied in their correct order
 - The vertical transformations involved will need to be applied in their correct order
- Suppose there are two horizontal transformation H₁then H₂ and two vertical transformations V₁then
 V₂ then they can be applied in the following orders:
 - Horizontal then vertical:
 - H₁H₂V₁V₂
 - Vertical then horizontal:
 - $V_1V_2H_1H_2$
 - Mixed up (provided that H₁ comes before H₂ and V₁ comes before V2):
 - H₁V₁H₂V₂
 - H₁V₁V₂H₂
 - V₁H₁V₂H₂
 - V₁H₁H₂V₂

The diagram below shows the graph of y = f(x).



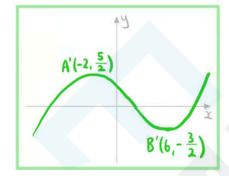
Sketch the graph of
$$y = \frac{1}{2} f\left(\frac{x}{2}\right)$$
.

A vertical and horizontal transformation can be done in any order

 $y = \frac{1}{2}f(x)$: vertical stretch scale factor $\frac{1}{2}$ $y = f(\frac{x}{2})$: horizontal stretch scale factor 2

A becomes $\left(-2, \frac{5}{2}\right)$

B becomes $(6, -\frac{3}{2})$

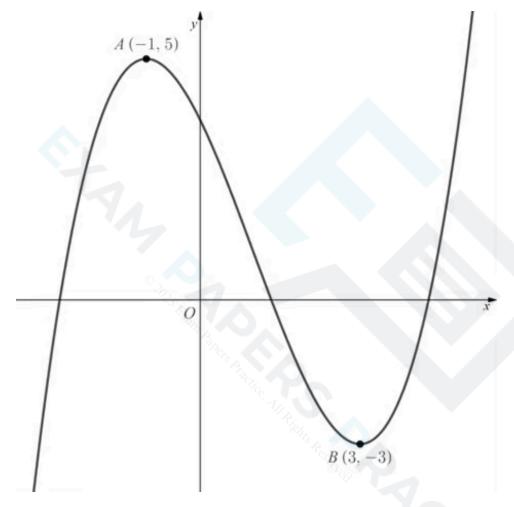


Composite Vertical Transformations af(x)+b

How do I deal with multiple vertical transformations?

- Order matters when you have more than one vertical transformations
- If you are asked to find the equation then **build up the equation** by looking at the transformations in order
 - A **vertical stretch** by scale factor a followed by a **translation** of $\begin{pmatrix} 0 \\ b \end{pmatrix}$
 - Stretch: y = af(x)
 - Then translation: y = [af(x)] + b
 - Final equation: y = af(x) + b
 - A **translation** of $\begin{pmatrix} 0 \\ b \end{pmatrix}$ followed by a **vertical stretch** by scale factor a
 - Translation: y = f(x) + b
 - Then stretch: y = a[f(x) + b]
 - Final equation: y = af(x) + ab
- If you are asked to determine the order
 - The order of vertical transformations follows the order of operations
 - First write the equation in the form y = af(x) + b
 - First stretch vertically by scale factor a
 - If a is negative then the **reflection and stretch** can be **done in any order**
 - Then translate by $\begin{pmatrix} 0 \\ b \end{pmatrix}$

The diagram below shows the graph of y = f(x).



Sketch the graph of y = 3f(x) - 2.

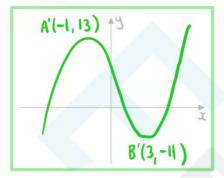
The order vertical transformations follows the order of operations

y = 3f(x): Vertical stretch scale factor 3

y = f(x) - 2: Translate $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$

A becomes (-1, 13)

B becomes (3,-11)

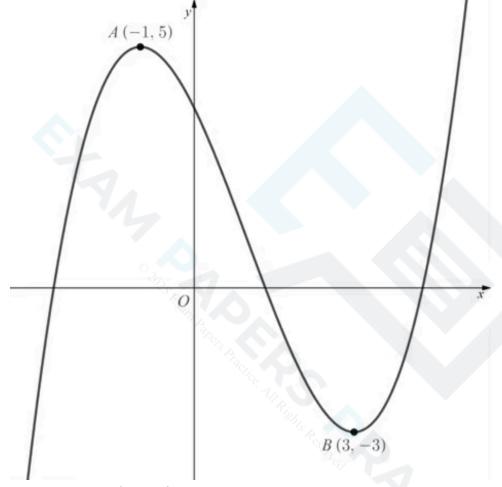


Composite Horizontal Transformations f(ax+b)

How do I deal with multiple horizontal transformations?

- Order matters when you have more than one horizontal transformations
- If you are asked to find the equation then **build up the equation** by looking at the transformations in order
 - A horizontal stretch by scale factor $\frac{1}{a}$ followed by a translation of $\begin{pmatrix} -b \\ 0 \end{pmatrix}$
 - Stretch: y = f(ax)
 - Then translation: y = f(a(x+b))
 - Final equation: y = f(ax + ab)
 - A translation of $\begin{pmatrix} -b \\ 0 \end{pmatrix}$ followed by a horizontal stretch by scale factor $\frac{1}{a}$
 - Translation: y = f(x + b)
 - Then stretch: y = f((ax) + b)
 - Final equation: y = f(ax + b)
- If you are asked to determine the order
 - First write the equation in the form y = f(ax + b)
 - The order of horizontal transformations is the reverse of the order of operations
 - First translate by $\begin{pmatrix} -b \\ 0 \end{pmatrix}$
 - Then stretch by scale factor $\frac{1}{a}$
 - If a is negative then the reflection and stretch can be done in any order

The diagram below shows the graph of y = f(x).



Sketch the graph of y = f(2x - 1).

The order of horizontal transformations is the reverse of the order of operations

y = f(x-1): Translate $\binom{1}{0}$ y = f(2x): Horizontal stretch scale factor $\frac{1}{2}$

A becomes (0,5)

B becomes (2,-3)

