

2.5 Reciprocal & Rational Functions

2025 R3-310

Contents

★ 2.5.1 Reciprocal & Rational Functions

ty

Rights Reserved

2.5.1 Reciprocal & Rational Functions

Reciprocal Functions & Graphs

What is the reciprocal function?

• The **reciprocal function** is defined by $f(x) = \frac{1}{x}, x \neq 0$

- Its domain is the set of all real values except 0
- Its range is the set of all real values except 0
- The reciprocal function has a **self-inverse** nature
 - $f^{-1}(x) = f(x)$
 - $(f \circ f)(x) = x$

What are the key features of the reciprocal graph?

- The graph does not have a y-intercept
- The graph **does not have any roots**
- The graph has two asymptotes
 - A horizontal asymptote at the x-axis: y=0
 - This is the **limiting value** when the absolute value of x gets very large
 - A vertical asymptote at the y-axis: x = 0
 - This is the value that causes the denominator to be zero
- The graph has **two axes of symmetry**
 - y = x
 - y = -x
- The graph does not have any minimum or maximum points

žeo -

Linear Rational Functions & Graphs

What is a rational function with linear terms?

- A (linear) rational function is of the form $f(x) = \frac{ax+b}{cx+d}, x \neq -\frac{d}{c}$
- Its domain is the set of all real values except $-\frac{d}{c}$
- Its range is the set of all real values except $\frac{a}{c}$
- The reciprocal function is a special case of a rational function

What are the key features of linear rational graphs?

- The graph has a **y-intercept** at $\left(0, \frac{b}{d}\right)$ provided $d \neq 0$
- The graph has **one root** at $\left(-\frac{b}{a}, 0\right)$ provided $a \neq 0$
- The graph has two asymptotes
 - A horizontal asymptote: $y = \frac{a}{c}$
 - This is the **limiting value** when the absolute value of x gets very large
 - A vertical asymptote: $x = -\frac{d}{c}$
 - This is the value that causes the denominator to be zero
- The graph does not have any minimum or maximum points
- If you are asked to **sketch or draw** a rational graph:
 - Give the **coordinates** of any **intercepts** with the axes
 - Give the equations of the asymptotes

SAC'CU

Quadratic Rational Functions & Graphs

How do I sketch the graph of a rational function where the terms are not linear?

- A rational function can be written $f(x) = \frac{g(x)}{h(x)}$
 - Where g and h are polynomials
- To find the **y-intercept** evaluate $\frac{g(0)}{h(0)}$
- To find the x-intercept(s) solve g(x) = 0
- To find the equations of the vertical asymptote(s) solve h(x) = 0
- There will also be an **asymptote** determined by what *f*(*x*) tends to as *x* approaches infinity
 - In this course it will be either:
 - Horizontal
 - Oblique (a slanted line)
 - This can be found by writing g(x) in the form h(x)Q(x) + r(x)
 - You can do this by polynomial division or comparing coefficients
 - The function then tends to the curve y = Q(x)

What are the key features of rational graphs: quadratic over linear?

• For the rational function of the form $f(x) = \frac{ax^2 + bx + c}{dx + e}$

$$\begin{pmatrix} c \end{pmatrix}$$

- The graph has a y-intercept at $\left(0, \frac{-}{e}\right)$ provided $e \neq 0$
- The graph can have **0**, **1 or 2 roots**
 - They are the solutions to $ax^2 + bx + c = 0$
- The graph has one vertical asymptote $X = -\frac{e}{\lambda}$
- The graph has an **oblique asymptote** y = px + q
 - Which can be found by writing $ax^2 + bx + c$ in the form (dx + e)(px + q) + r
 - Where p, q, r are constants
 - This can be done by **polynomial division** or **comparing coefficients**

What are the key features of rational graphs: linear over quadratic?

- For the rational function of the form $f(x) = \frac{ax+b}{cx^2+dx+e}$
- The graph has a **y-intercept** at $\left(0, \frac{b}{e}\right)$ provided $e \neq 0$
- The graph has **one root** at $x = -\frac{b}{a}$
- The graph has can have 0, 1 or 2 vertical asymptotes
 - They are the solutions to $cx^2 + dx + e = 0$
- The graph has a horizontal asymptote

Reserved

Worked example
The function
$$f$$
 is defined by $f(x) = \frac{2x^2 + 5x - 3}{x + 1}$ for $x \neq -1$.
a) (i) Show that $\frac{2x^2 + 5x - 3}{x + 1} = px + q + \frac{r}{x + 1}$ for constants p , q and r which are to be found.
(ii) Hence write down the equation of the oblique asymptote of the graph of f .
(i) Write $2x^2 + 5x - 3$ as $(x+1)(px+q) + r$
 $2x^2 + 5x - 3 = px^2 + qx + px + q + r$
(compare coefficients
 $2 = p$ $5 = q + p$ $-3 = q + r$
 $\therefore p = 2$ $\therefore q = 3$ $\therefore r = -6$
 $2x^2 + 5x - 3 = (x+1)(2x+3) - 6 = 2x + 3 - \frac{6}{x+1}$
(i) $y = 2x + 3$

b) Find the coordinates of the intercepts of the graph of f with the axes.

y =
$$\frac{2(0)^{1}+5(0)-3}{(0)+1} = -3$$
 (0,-3)
x - intercept occurs when y = 0
 $\frac{2x^{1}+5x-3}{x+1} = 0 \implies 2x^{1}+5x-3=0 \implies (2x-1)(x+3) \implies x=0.5$ or $x=-3$
(0.5, 0) and (-3,0)

c) Sketch the graph of f.

Vertical asymptote when denominator is zero x = -1Include asymptotes and intercepts

UI RIEIIIS Reserved