

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

2.5 Transformations of Graphs

IB Maths - Revision Notes

2.5.1 Translations of Graphs

Translations of Graphs

What are translations of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- For a translation:
 - the graph is **moved** (up or down, left or right) in the xy plane
 - Its position changes
 - the shape, size, and orientation of the graph remain **unchanged**
- A particular translation (how far left/right, how far up/down) is specified by a translation vector

- *x* is the **horizontal** displacement
 - Positive moves right
 - Negative moves left
- y is the vertical displacement
 - Positive moves up
 - Negative moves down

© 2024 Exam Papers Practice

What effects do horizontal translations have on the graphs and functions?

Copy•igIA horizontal translation of the graph y = f(x) by the vector $\begin{pmatrix} a \\ 0 \end{pmatrix}$ is represented by

- © 2024 Exam Papers Practice • y = f(x - a)
 - The x-coordinates change
 - The value *a* is **subtracted** from them
 - The y-coordinates stay the same
 - The coordinates (x, y) become (x + a, y)
 - Horizontal asymptotes stay the same
 - Vertical asymptotes change
 - x = k becomes x = k + a

What effects do vertical translations have on the graphs and functions?

- A vertical translation of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ b \end{pmatrix}$ is represented by
 - y-b=f(x)
 - This is often rearranged to y = f(x) + b
- The x-coordinates stay the same
- The y-coordinates change
 - The value b is added to them
- The coordinates (x, y) become (x, y+b)
- Horizontal asymptotes change
 - y = k becomes y = k + b
- Vertical asymptotes stay the same

The diagram below shows the graph of y = f(x).

a) Sketch the graph of y = f(x+3).

2.5.2 Reflections of Graphs

Reflections of Graphs

What are reflections of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- Forareflection:
 - the graph is **flipped** about one of the coordinate axes
 - Its orientation changes
 - the size of the graph remains **unchanged**
- A particular reflection is specified by an **axis of symmetry**:
 - V = 0

© 2024 Exam Papers Practice

What effects do horizontal reflections have on the graphs and functions?

• A horizontal reflection of the graph y = f(x) about the y-axis is represented by

$$y = f(-x)$$

- The *x*-coordinates change
 - Their sign changes
- The y-coordinates stay the same
- The coordinates (X, y) become (-X, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - X = k becomes X = -k

What effects do vertical reflections have on the graphs and functions?

- A vertical reflection of the graph y = f(x) about the x-axis is represented by
 - -y = f(x)
 - This is often rearranged to y = -f(x)
- The x-coordinates stay the same
- The y-coordinates change
 - Their sign changes
- The coordinates (X, y) become (X, -y)
- Horizontal asymptotes change
 - y = k becomes y = -k
- Vertical asymptotes stay the same

The diagram below shows the graph of y = f(x).

a) Sketch the graph of
$$y = -f(x)$$
.

© 2024 Exam Papers Practice

2.5.3 Stretches of Graphs

Stretches of Graphs

What are stretches of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by **geometrical transformations**
- Forastretch:
 - the graph is stretched about one of the coordinate axes by a scale factor
 Its size changes
 - the orientation of the graph remains **unchanged**
- A particular stretch is specified by a **coordinate axis** and a **scale factor**:
 - The distance between a point on the graph and the specified coordinate axis is multiplied by the constant scale factor
 - The graph is stretched in the direction which is parallel to the other coordinate axis
 - For scale factors bigger than 1
 - the points on the graph get further away from the specified coordinate axis
 - For scale factors between 0 and 1
 - the points on the graph get closer to the specified coordinate axis
 - This is also sometimes called a **compression** but in your exam you must use the term **stretch** with the appropriate scale factor

What effects do horizontal stretches have on the graphs and functions?

• A horizontal stretch of the graph y = f(x) by a scale factor q centred about the y-axis is represented by

•
$$y = f\left(\frac{x}{q}\right)$$

- The *x*-coordinates change
 - They are **divided** by q
- The y-coordinates stay the same

- The coordinates (x, y) become (qx, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = qk

What effects do vertical stretches have on the graphs and functions?

• A vertical stretch of the graph y = f(x) by a scale factor *p* centred about the *x*-axis is represented by

$$\frac{y}{p} = f(x)$$

- This is often rearranged to y = pf(x)
- The *x*-coordinates stay the same
- The y-coordinates change
 - They are multiplied by p
- The coordinates (x, y) become (x, py)
- Horizontal asymptotes change
 - y = k becomes y = pk
- Vertical asymptotes stay the same

😧 Exam Tip

- To get full marks in an exam make sure you use correct mathematical terminology
 - For example: Stretch vertically by scale factor 1/2
 - Do not use the word "compress" in your exam

Worked example

The diagram below shows the graph of y = f(x).

a) Sketch the graph of y = 2f(x).

© 2024 Exam Papers Practice

2.5.4 Composite Transformations of Graphs

Composite Transformations of Graphs

What transformations do I need to know?

- y = f(x + k) is horizontal translation by vector $\begin{pmatrix} -h \\ 0 \end{pmatrix}$
 - If k is **positive** then the graph moves **left**
 - If k is negative then the graph moves right

•
$$y = f(x) + k$$
 is vertical translation by vector $\begin{pmatrix} 0 \\ k \end{pmatrix}$

- If k is positive then the graph moves up
- If k is negative then the graph moves down
- y = f(kx) is a horizontal stretch by scale factor $\frac{1}{k}$ centred about the y-axis
 - If k>1 then the graph gets closer to the y-axis
 - If 0 < k < 1 then the graph gets further from the y-axis</p>
- y = kf(x) is a vertical stretch by scale factor k centred about the x-axis
 - If k > 1 then the graph gets further from the x-axis
 - If 0 < k < 1 then the graph gets closer to the x-axis</p>
- y = f(-x) is a **horizontal reflection** about the *y*-axis
 - A horizontal reflection can be viewed as a special case of a horizontal stretch
- y = -f(x) is a **vertical reflection** about the *x*-axis
 - A vertical reflection can be viewed as a special case of a vertical stretch

How do horizontal and vertical transformations affect each other?

Horizontal and vertical transformations are independent of each other

- Copyright The horizontal transformations involved will need to be applied in their correct order
- © 2024 Example 202
 - Suppose there are two horizontal transformation H₁ then H₂ and two vertical transformations V₁ then V₂ then they can be applied in the following orders:
 - Horizontal then vertical:
 - $H_1 H_2 V_1 V_2$
 - Vertical then horizontal:
 - $V_1V_2H_1H_2$
 - Mixed up (provided that H₁ comes before H₂ and V₁ comes before V2):
 - $H_1V_1H_2V_2$
 - $H_1V_1V_2H_2$
 - $V_1 H_1 V_2 H_2$
 - $V_1 H_1 H_2 V_2$

😧 Exam Tip

• In an exam you are more likely to get the correct solution if you deal with one transformation at a time and sketch the graph after each transformation

The diagram below shows the graph of y = f(x).

Composite Vertical Transformations af(x)+b

How do I deal with multiple vertical transformations?

- Order matters when you have more than one vertical transformations
- If you are asked to find the equation then build up the equation by looking at the transformations in order
 - A vertical stretch by scale factor *a* followed by a translation of
 - Stretch: y = af(x)
 - Then translation: y = [af(x)] + b
 - Final equation: y = af(x) + b

• A translation of $\begin{pmatrix} 0 \\ b \end{pmatrix}$ followed by a vertical stretch by scale factor *a*

- Translation: y = f(x) + b
- Then stretch: y = a[f(x) + b]
- Final equation: y = af(x) + ab
- If you are asked to determine the order
 - The order of vertical transformations follows the order of operations
 - First write the equation in the form v = af(x) + b
 - First stretch vertically by scale factor a
 - If *a* is negative then the **reflection and stretch** can be **done in any order bapers Practice**

Then translate by

The diagram below shows the graph of y = f(x).

Page 21 of 23 For more help visit our website www.exampaperspractice.co.uk

Composite Horizontal Transformations f(ax+b)

How do I deal with multiple horizontal transformations?

- Order matters when you have more than one horizontal transformations
- If you are asked to find the equation then build up the equation by looking at the transformations in order
 - A horizontal stretch by scale factor $\frac{1}{a}$ followed by a translation of
 - Stretch: y = f(ax)
 - Then translation: y = f(a(x + b))
 - Final equation: y = f(ax + ab)
 - A translation of $\begin{pmatrix} -b\\ 0 \end{pmatrix}$ followed by a horizontal stretch by scale factor $\frac{1}{a}$
 - Translation: y = f(x + b)
 - Then stretch: y = f((ax) + b)
 - Final equation: y = f(ax + b)

Then stretch by scale factor

- If you are asked to determine the order
 - First write the equation in the form y = f(ax + b)
 - The order of horizontal transformations is the reverse of the order of operations

ractice

- First translate by $\begin{pmatrix} -b \\ 0 \end{pmatrix}$

© 2024 Exam Palfais negative then the reflection and stretch can be done in any order

1

The diagram below shows the graph of y = f(x).

Page 23 of 23 For more help visit our website www.exampaperspractice.co.uk