EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.5 Transformations of Graphs

2.5.1 Translations of Graphs

Translations of Graphs

What are translations of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described bygeometricaltransformations
- Foratranslation:
- the graph is moved (up ordown, left orright) in the xy plane
- Its position changes
- the shape, size, and orientation of the graph remain unchanged
- A particular translation (how far left/right, how far up/down) is specified by a translation vector $\binom{x}{y}:$
- x is the horizontal displacement
- Positive moves right
- Negative moves left
- yis the vertical displacement
- Positive moves up
- Negative moves down

Exam Papers Practice
© 2024 Exam Papers Practice

What effects do horizontaltranslations have on the graphs and functions?

A horizontal translation of the graph $y=f(x)$ bythe vector $\binom{a}{0}$ is represented by

- $y=f(x-a)$
- The x-coordinates change
- The value ais subtracted from them
- The y-coordinates stay the same
- The coordinates (x, y) become $(x+a, y)$
- Horizontal asymptotes stay the same
- Vertical asymptotes change
- $x=k$ becomes $x=k+a$

Page 3 of 23
For more help visit our website www.exampaperspractice.co.uk

What effects do vertical translations have on the graphs and functions?

- A vertical translation of the graph $y=f(x)$ by the vector $\binom{0}{b}$ is represented by
- $y-b=f(x)$
- This is often rearranged to $y=f(x)+b$
- The \boldsymbol{x}-coordinates stay the same
- The y-coordinates change
- The value b is added to them
- The coordinates (x, y) become $(x, y+b)$
- Horizontal asymptotes change
- $y=k$ becomes $y=k+b$
- Vertical asymptotes stay the same

(9) Exam Tip

- To get full marks in an exam make sure you use correct mathematical terminology
- For example:Translate by the vector $\binom{2}{-4}$

Worked example

The diagram below shows the graph of $y=f(x)$.

a) Sketch the graph of $y=f(x+3)$.
$y=f(x+k)$ translation by $\binom{-k}{0}$

b）Sketch the graph of $y=f(x)+3$ ．

Copyright
© 2024 Exam Papers Practice

2.5.2 Reflections of Graphs

Reflections of Graphs

What are reflections of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described bygeometricaltransformations
- For a reflection:
- the graph is flipped about one of the coordinate axes
- Its orientation changes
- the size of the graph remains unchanged
- A particular reflection is specified by an axis of symmetry:
- $y=0$
- This is the x-axis
- $\quad x=0$
- This is the y-axis

Copyright
© 2024 Exam Papers Practice

What effects do horizontal reflections have on the graphs and functions?

- A horizont al reflection of the graph $y=f(x)$ abo ut the y-axis is represented by
- $y=f(-x)$
- The \boldsymbol{x}-coordinates change
- Theirsignchanges
- The \boldsymbol{y}-coordinates stay the same
- The coordinates (x, y) become $(-x, y)$
- Horizontal asymptotes stay the same
- Vertical asymptotes change
- $X=k$ becomes $X=-k$

Exam Papers Practice

What effects do vertical reflections have on the graphs and functions?

- A vertical reflection of the graph $y=f(x)$ abo ut the x-axis is represented by
- $-y=f(x)$
- This is often rearranged to $y=-f(x)$
- The \boldsymbol{x}-coordinates stay the same
- The \boldsymbol{y}-coordinates change
- Theirsignchanges
- The coordinates (x, y) become $(x,-y)$
- Horizontal asymptotes change
- $y=k$ becomes $y=-k$
- Vertical asymptotes stay the same

Exam Papers Practice
© 2024 Exam Papers Practice

Worked example

The diagram below shows the graph of $y=f(x)$.

$$
y=-f(x) \text { reflection in } x \text {-axis }
$$

$$
\text { A becomes }(-1,-5)
$$

$$
B \text { becomes }(3,3)
$$

b) Sketch the graph of $y=f(-x)$.

$$
y=f(-x) \text { reflection in } y \text {-axis }
$$

$$
\text { A becomes }(1,5)
$$

$$
B \text { becomes }(-3,-3)
$$

Exam Papers Practice

2.5.3 Stretches of Graphs

Stretches of Graphs

What are stretches of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by geometricaltransformations
- Forastretch:
- the graph is stretched about one of the coordinate axes by a scale factor
- Its size changes
- the orientation of the graph remains unchanged
- A particular stretch is specified bya coordinate axis and a scale factor:
- The distance between a point on the graph and the specified coordinate axis is multiplied by the constant scale factor
- The graph is stretched in the direction which is parallel to the other coordinate axis
- Forscale factors bigger than 1
- the points on the graph get further away from the specified coordinate axis
- Forscale factors between 0 and 1
- the points on the graph get closer to the specified coordinate axis
- This is also sometimes called a compression but in your exam you must use the term stretch with the appro priate scale factor

What effects do horizontal stretches have on the graphs and functions?

- A horizontal stretch of the graph $y=f(x)$ bya scale factor qcentred about the y-axis is represented by
- $y=f\left(\frac{x}{q}\right)$
- The \boldsymbol{x}-coordinates change
- Theyare divided by a
- The \boldsymbol{y}-coordinates stay the same

Exam Papers Practice

- The coordinates (x, y) become $(q x, y)$
- Horizontal asymptotes stay the same
- Vertical asymptotes change
- $x=k$ becomes $x=q k$

What effects do verticalstretches have on the graphs and functions?

- A vertical stretch of the graph $y=f(x)$ by a scale factorp centred about the x-axis is represented by
- $\frac{y}{p}=f(x)$
- This is often rearranged to $y=p f(x)$
- The \boldsymbol{x}-coordinates stay the same
- The \boldsymbol{y}-coordinates change
- Theyare multiplied by p
- The coordinates (x, y) become $(x, p y)$
- Horizont al asymptotes change
- $y=k$ becomes $y=p k$
- Vertical asymptotes stay the same

- Exam Tip

- To get full marks in an exam make sure you use correct mathematical terminology
- For example: Stretch verticallybyscale factor½
- Do not use the word "compress" in your exam

Worked example

The diagram below shows the graph of $y=f(x)$.

a) Sketch the graph of $y=2 f(x)$.

Exam Papers Practice
$y=k f(x)$ vertical stretch scale factor k
Stretch $y=f(x)$ vertically scale factor 2

A becomes $(-1,10)$
B becomes $(3,-6)$

b) Sketch the graph of $y=f(2 x)$.

$$
y=f(k x) \text { horizontal stretch scale factor } \frac{1}{k}
$$

Stretch $y=f(x)$ horizontally scale factor $\frac{1}{2}$ A becomes $\left(-\frac{1}{2}, 5\right)$
$\square B$ becomes $\left(\frac{3}{2},-3\right)$

Copyright
© 2024 Exam Papers Practice

Exam Papers Practice

2.5.4 Composite Transformations of Graphs

Composite Transformations of Graphs

What transformations do Ineed to know?

- $y=f(x+k)$ is horizontal translation by vector $\binom{-k}{0}$
- If k is positive then the graph moves left
- If k is negative then the graph moves right
- $y=f(x)+k$ is vertical translation by vector $\binom{0}{k}$
- If k is positive then the graph moves up
- If k is negative then the graph moves down
- $y=f(k x)$ is a horizontal stretch byscale factor $\frac{1}{k}$ centred about the y-axis
- If $\boldsymbol{k}>1$ then the graph gets closer to the y-axis
- If $0<k<1$ then the graph gets further from the y-axis
- $y=k f(x)$ is a vertical stretch byscale factor k centred about the x-axis
- If $\boldsymbol{k}>1$ then the graph gets further from the x-axis
- If $0<\boldsymbol{k}<\boldsymbol{1}$ then the graph gets closer to the \boldsymbol{x}-axis
- $y=f(-x)$ is a horizont al reflection about the y-axis
- A horizontal reflection can be viewed as a special case of a horizontal stretch
- $y=-f(x)$ is a vertical reflection about the x-axis
- A vertical reflection can be viewed as a special case of a vertical stretch

How do horizontal and vertical transformations affect each other?

- Horizont al and vertical transformations are independent of each other
- The ho rizontal transformations involved will need to be applied in their correct order
- E The verticaltransformations involved will need to be applied in their correct order
- Suppose there are two horizontal transformation H_{1} then H_{2} and two vertical transformations $\mathbf{V}_{\mathbf{1}}$ then $\mathbf{V}_{\mathbf{2}}$ then they can be applied in the following orders:
- Horizontal thenvertical:
- $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2}$
- Vertical then horizontal:
- $\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{H}_{1} \mathrm{H}_{2}$
- Mixed up (provided that H_{1} comes before H_{2} and V_{1} comes before V) :
- $\mathrm{H}_{1} \mathrm{~V}_{1} \mathrm{H}_{2} \mathrm{~V}_{2}$
- $\mathrm{H}_{1} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{H}_{2}$
- $\mathrm{V}_{1} \mathrm{H}_{1} \mathrm{~V}_{2} \mathrm{H}_{2}$
- $\mathrm{V}_{1} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~V}_{2}$

(-) Exam Tip

- In an exam you are more likely to get the correct solution if you deal with one transformation at a time and sketch the graph after each transformation

Worked example

The diagram below shows the graph of $y=f(x)$.

Sketch the graph of $y=\frac{1}{2} f\left(\frac{x}{2}\right)$.
copyright A vertical and horizontal transformation can be done
© 2024 Exam Papers Pranticeany order
$y=\frac{1}{2} f(x)$: vertical stretch scale factor $\frac{1}{2}$
$y=f\left(\frac{x}{2}\right)$: horizontal stretch scale factor 2
A becomes $\left(-2, \frac{5}{2}\right)$
B becomes $\left(6,-\frac{3}{2}\right)$

Composite Vertical Transformations af(\mathbf{x})+b

How do Ideal with multiple vertical transformations?

- Order matters when you have more than one vertical transformations
- If you are asked to find the equation then build up the equation by looking at the transformations in order
- A vertical stretch by scale factor afollowed by a translation of $\binom{0}{b}$
- Stretch: $y=a f(x)$
- Then translation: $y=[a f(x)]+b$
- Final equation: $y=a f(x)+b$
- A translation of $\binom{0}{b}$ fo
followed by a vertical stretch byscale factora
- Translation: $y=f(x)+b$
- Then stretch: $y=a[f(x)+b]$
- Final equation: $y=a f(x)+a b$
- If you are asked to determine the order
- The order of vertical transformations follows the order of operations
- First write the equation in the form $y=a f(x)+b$
- First stretchvertically byscale factora
- If ais negative then the reflection and stretch can be done in any order
- Thentranslate by $\binom{0}{b}$
© 2024 Exam Papers Practice

The diagram below shows the graph of $y=f(x)$.

Sketch the graph of $y=3 f(x)-2$.

Copyright

(c) 2024 Exam Papers Practice The order vertical transformations follows the order of operations
$y=3 f(x)$: Vertical stretch scale factor 3
$y=f(x)-2$: Translate $\binom{0}{-2}$
A becomes $(-1,13)$
B becomes $(3,-11)$

Exam Papers Practice

Composite Horizontal Transformations f(ax+b)

Howdoldeal with multiple horizontal transformations?

- Order matters when you have more than one horizontal transformations
- If you are asked to find the equation then build up the equation bylooking at the transformations in order
- A horizontal stretch byscale factor $\frac{1}{a}$ followed by a translation of $\binom{-b}{0}$
- Stretch: $y=f(a x)$
- Thentranslation: $y=f(a(x+b))$
- Final equation: $y=f(a x+a b)$
- A translation of $\binom{-b}{0}$ followed by a horizontal stretch by scale factor $\frac{1}{a}$
- Translation: $y=f(x+b)$
- Then stretch: $y=f((a x)+b)$
- Final equation: $y=f(a x+b)$
- If you are asked to determine the order
- First write the equation in the form $y=f(a x+b)$
- The order of horizontal transformations is the reverse of the order of operations
- First translate by $\binom{-b}{0}$
- Then stretch byscale factor $\frac{1}{a}$
- If a is negative then the reflection and stretch can be done in any order

Worked example

The diagram below shows the graph of $y=f(x)$.

© 2024 Exam Papers The order of horizontal transformations is the reverse of the order of operations $y=f(x-1)$: Translate $\binom{1}{0}$
$y=f(2 x)$: Horizontal stretch scale factor $\frac{1}{2}$
A becomes $(0,5)$
B becomes $(2,-3)$

