铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

2.5 Reciprocal \& Rational Functions

AA HL

2.5.1 Reciprocal \& Rational Functions

Reciprocal Functions \& Graphs

What is the reciprocalfunction?

- The reciprocal function is defined by $f(x)=\frac{1}{x}, x \neq 0$
- Its domain is the set of all real values except 0
- Its range is the set of all real values except 0
- The reciprocal function has a self-inverse nature
- $f^{-1}(x)=f(x)$
- $(f \circ f)(x)=X$

What are the key features of the reciprocal graph?

- The graph does not have ay-intercept
- The graph does not have any roots
- The graph has two asymptotes
- A horizontal asymptote at the x-axis: $y=0$
- This is the limiting value when the absolute value of x gets verylarge
- A vertical asymptote at the y-axis: $\boldsymbol{X}=0$
- This is the value that causes the denominator to bezero
- The graph has two axes of symmetry
- $y=x$
- $y=-x$
- The graph does not have any minimum or maximum points

Linear Rational Functions \& Graphs

What is a rational function with linear terms?

- A (linear) rational function is of the form $f(x)=\frac{a x+b}{c x+d}, x \neq-\frac{d}{c}$
- Its domain is the set of all real values except $-\frac{d}{c}$
- Its range is the set of all real values except $\frac{a}{c}$
- The recip rocal function is a special case of a rational function

What are the key features of linear rational graphs?

- The graph has a \boldsymbol{y}-intercept at $\left(0, \frac{b}{d}\right)$ provided $d \neq 0$
- The graph has one root at $\left(-\frac{b}{a}, 0\right)$ provided $a \neq 0$
- The graph has two asymptotes
- A horizontal asymptote: $y=\frac{a}{c}$
- This is the limiting value when the absolute value of x gets verylarge
- A vertical asymptote: $X=-\frac{d}{c}$
- This is the value that causes the denominator to bezero
- The graph does not have any minimum or maximum points

2. If you are asked to sketch or draw a rational graph:

- Give the coordinates of any intercepts with the axes
- Give the equations of the asymptotes

- Exam Tip

- If you draw a horizontal line anywhere it should only intersect this type of graph once at most
- The only ho rizontal line that should not intersect the graph is the horizo ntal asymptote
- This can be used to checkyour sketch in an exam

Worked example

The function f is defined by $f(x)=\frac{10-5 x}{x+2}$ for $X \neq-2$.
a) Write down the equation of
(i) the vertical asymptote of the graph of f,
(ii) the horizontal asymptote of the graph of f.
(i) Vertical asymptote is when denominator equals zero

$$
x+2=0 \quad x=-2
$$

(ii) Horizontal asymptote is limiting value as x gets large $\lim _{x \rightarrow \infty} \frac{10-5 x}{x+2}=\lim _{x \rightarrow \infty} \frac{-5 x}{x} \quad y=-5$
b) Find the coordinates of the intercepts of the graph of f with the axes.

$$
\begin{aligned}
& y \text {-intercept occurs when } x=0 \\
& y=\frac{10-510)}{0+2}=5 \quad(0,5) \\
& x \text {-intercept occurs when } y=0
\end{aligned}
$$

$$
\frac{10-5 x}{x+2}=0
$$

Copyright c) Sketch the graph of f.
(2024 Exam Papers Practice
Include asymptotes and intercepts

Quadratic Rational Functions \& Graphs

Howdolsketch the graph of a rational function where the terms are not linear?

- A rational function can be written $f(x)=\frac{g(x)}{h(x)}$
- Where gand h are polynomials
- To find the y-intercept evaluate $\frac{g(0)}{h(0)}$
- To find the x-intercept(s) solve $g(x)=0$
- To find the equations of the vertical asymptote(s) solve $h(x)=0$
- There will also be an asymptote determined bywhat $f(x)$ tends to as x appro aches infinity
- In this course it will be either:
- Horizontal
- Oblique (a slanted line)
- This can be found by writing $g(x)$ in the form $h(x) Q(x)+r(x)$
- You cando this bypolynomial division or comparing coefficients
- The function then tends to the curve $y=Q(x)$

What are the key features of rationalgraphs: quadratic over linear?

- For the ratio nal function of the form $f(x)=\frac{a x^{2}+b x+c}{d x+e}$
- The graph has a y-intercept at $\left(0, \frac{c}{e}\right)$ provided $e \neq 0$
- The graph can have $\mathbf{0 , 1}$ or 2 roots
- They are the solutions to $a x^{2}+b x+c=0$
- The graph has one vertical asymptote $X=-\frac{e}{d}$
- The graph has an oblique asymptote $y=p x+q$
- Which can be found by writing $a x^{2}+b x+c$ in the form $(d x+e)(p x+q)+r$
- Where p, q, rare constants
- This can be done by polynomial divisio n orcomparing coefficients

What are the keyfeatures of rational graphs: linear over quadratic?

- For the rational function of the form $f(x)=\frac{a x+b}{c x^{2}+d x+e}$
- The graph has a y-intercept at $\left(0, \frac{b}{e}\right)$ provided $e \neq 0$
- The graph has one root at $X=-\frac{b}{a}$
- The graph has can have 0,1 or 2 vertical asymptotes
- They are the solutio ns to $c x^{2}+d x+e=0$
- The graph has a horizontal asymptote

$$
y=\frac{a x+b}{c x^{2}+d x+e}
$$

O Exam Tip

- If you draw a horizontal line anywhere it should only intersect this type of graph twice at most
- This idea can be used to check your graph or help you sketch it

Exam Papers Practice

Worked example

The function f is defined by $f(x)=\frac{2 x^{2}+5 x-3}{x+1}$ for $x \neq-1$.
a) (i)

Show that $\frac{2 x^{2}+5 x-3}{x+1}=p x+q+\frac{r}{x+1}$ forconstants p, q and r which are to be found.
(ii) Hence write down the equation of the oblique asymptote of the graph of f.
(i) Write $2 x^{2}+5 x-3$ as $(x+1)(p x+q)+r$ $2 x^{2}+5 x-3=p x^{2}+q x+p x+q+r$ Compare coefficients
$2 \begin{array}{cc}x^{2} & 5 \\ =p & 5=q+p\end{array}-3=q+r$
$\therefore p=2 \quad \therefore q=3 \quad \therefore r=-6$

$$
\frac{2 x^{2}+5 x-3}{x+1}=\frac{(x+1)(2 x+3)-6}{x+1}=2 x+3-\frac{6}{x+1}
$$

$\square-\square^{\text {(ii) }}$
(i) $y=2 x+3$
b) Find the coordinates of the intercepts of the graph of f with the axes.

Exam Papers Practice

$$
\begin{aligned}
& y \text {-intercept occurs when } x=0 \\
& y=\frac{2((0)+5(0)-3}{(0)+1}=-3 \quad(0,-3) \\
& x \text {-intercept occurs when } y=0 \\
& \frac{2 x^{2}+5 x-3}{x+1}=0 \Rightarrow 2 x^{2}+5 x-3=0 \Rightarrow(2 x-1)(x+3) \Rightarrow x=0.5 \text { or } x=-3 \\
& (0.5,0) \text { and }(-3,0)
\end{aligned}
$$

c) Sketch the graph of f.

Copyright
© 2024 Exam Papers Practice

